

Electromagnetically excited audible noise of electric machines

Prof. Kay Hameyer

RWTH Aachen University, Germany Institute of Electrical Machines (IEM)

Brief introduction

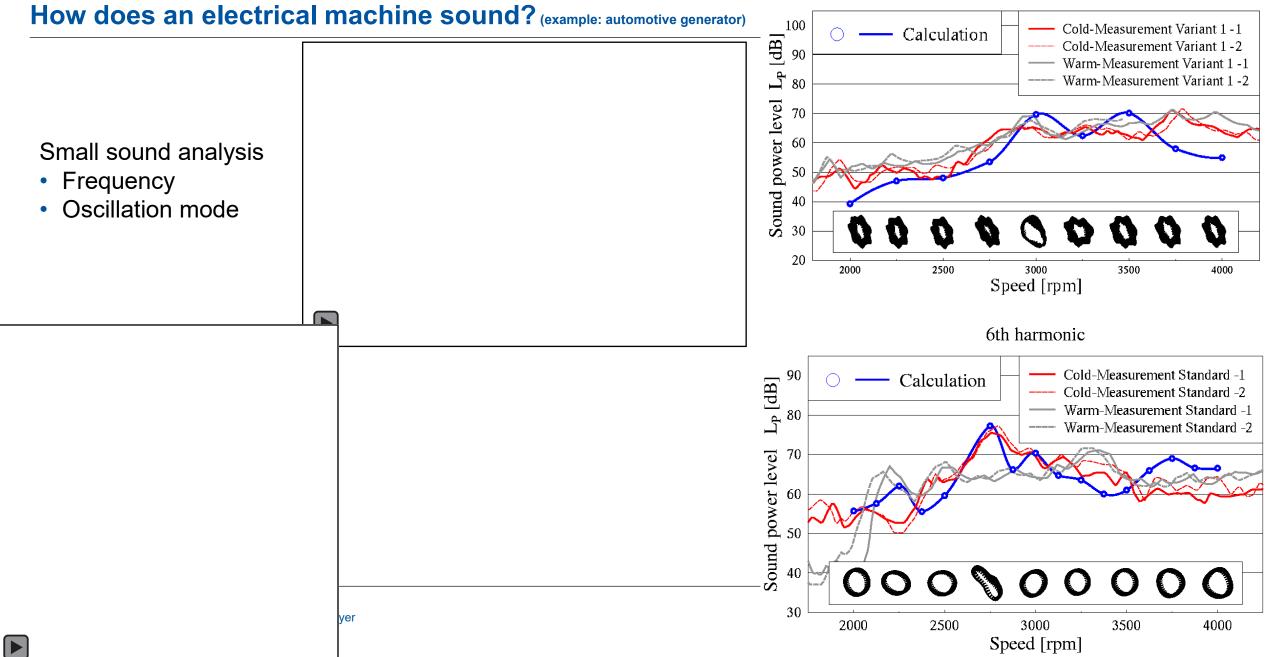
1 Motivation

- 2 Sources of audible noise
- **3** Analytical approximation
- 4 Design aspects
 - 4.1 Evaluation of noise excitation
 - 4.2 Numerical modeling and simulation
 - 4.3 Auralization & virtual reality
- 5 Summary & conclusions

Motivation

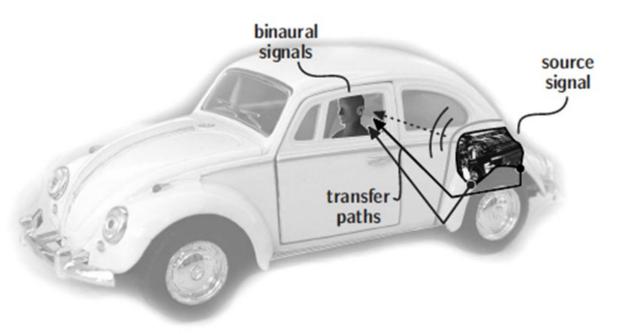
There is some noise (NVA... Noise Vibration Harshness)

- Electric motors can change the sound impression of particular applications
- Electric motors excite strong tonal single tones
- Single tones are usually displeasing
- Can be located with their frequency in the sensitive range of the human ear
- Engineering tools are required which predict the acoustic behavior of electrical machines
- Adaptation of the sound characteristic is possible by the magnet design of the machine → low noise motor
- Evaluation of noise sources in the environment → synthetic sound for auralization



TESLA roadster 2009

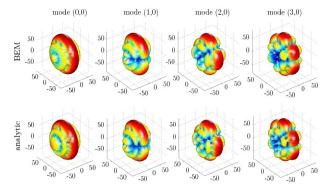
5th harmonic


Motivation

The aim is ...

- To understand the entire chain of the sound signal
 - from the source to the ear
 - Motor as the source

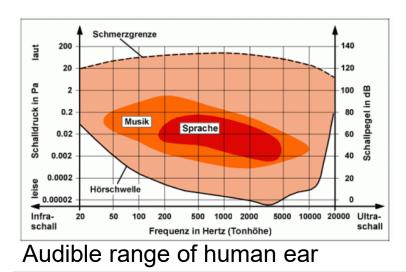
- Transfer paths
 - Car body
 - Other components
- Design of low noise motors
- Evaluation of noise source by room acoustics

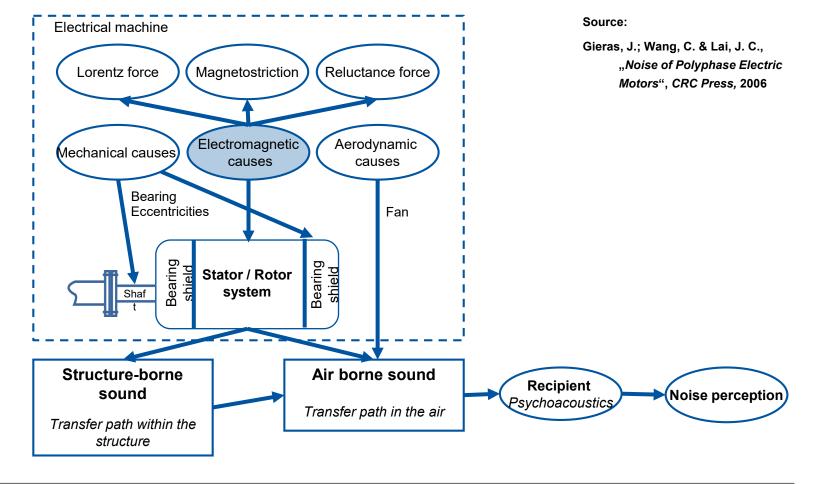

Source: Vorländer, M.: Auralization – Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, Springer, 2007

Electric motor – room acoustic

Overall acoustic models

- Actual room acoustic
 - Determined by measurement
- Simple acoustic motor model
 - Radiator models
 - Point
 - Cylinder
 - ...

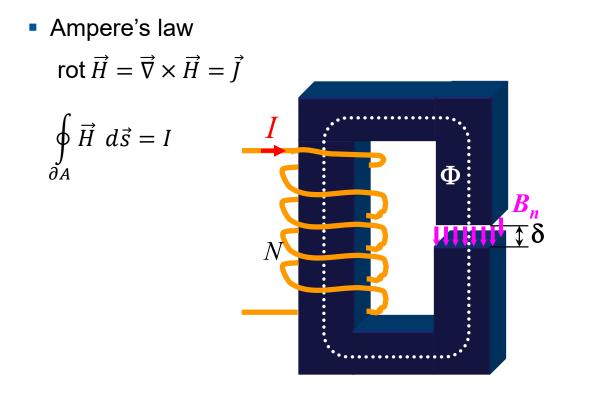




I I I I Institut für Elektrische Maschinen

Cause of electromagnetically excited noise in electrical machines

- Bearings
 - Single tone (>3 kHz)
- Ventilation
 - Wide band noise (500 Hz... 1 kHz)
- Electromagnetically excited noise
 - Single tone (entire spectrum... 4 kHz)



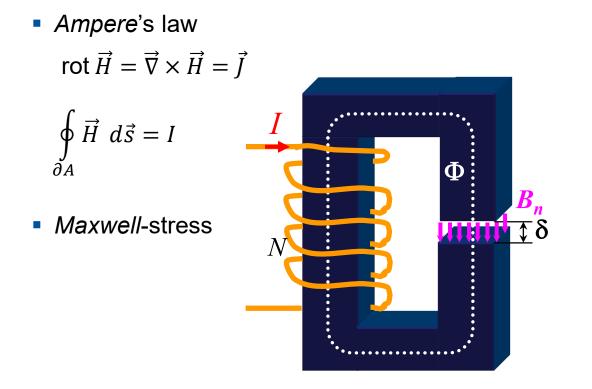
Elektrische

Air gap field

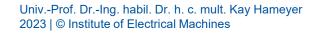
Relation between excitation current and resulting magnetic field

Current excitation

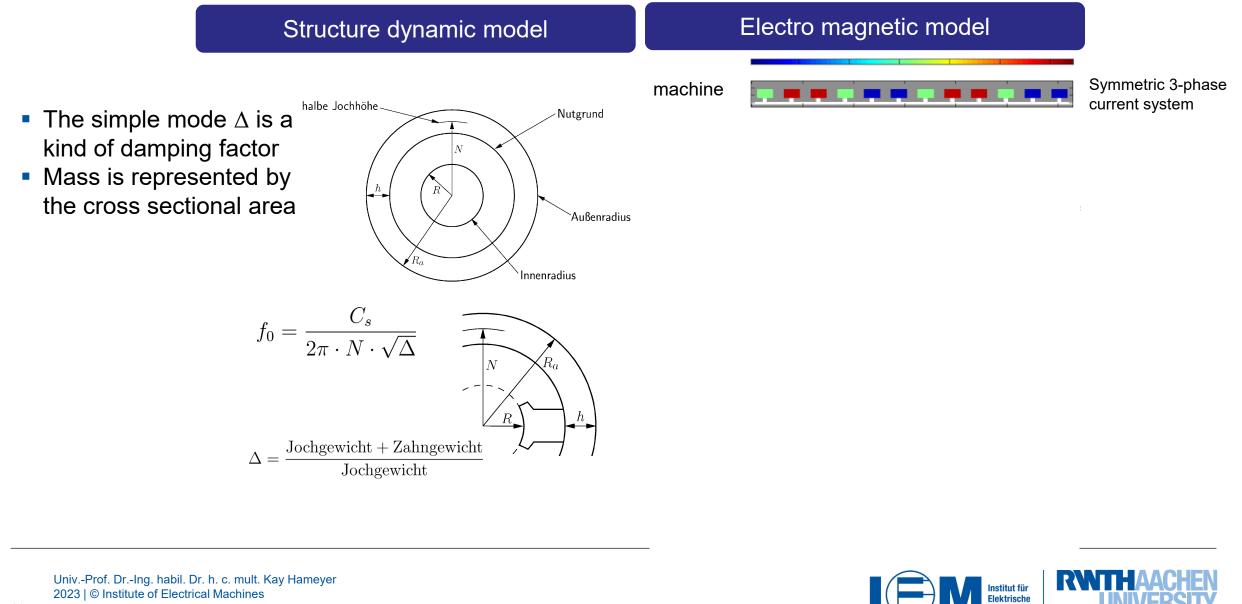
$$\Theta = NI = R_m \cdot \Phi$$


• Air gap magnetic field

$$B_n = \Lambda \cdot \Theta$$
$$= \frac{\mu_0}{\delta} \cdot N I$$


Electromagnetic forces

In rotating machines rotating air gap force waves


• Attracting forces at the interface air - iron

$$\sigma = \frac{B_n^2}{2\mu_0}$$

Generation of radial force waves in the air gap of an electric machine

Univ.-Prof. Dr.-Ing. habil. Dr. h. c. mult. Kay Hameyer 2023 | © Institute of Electrical Machines

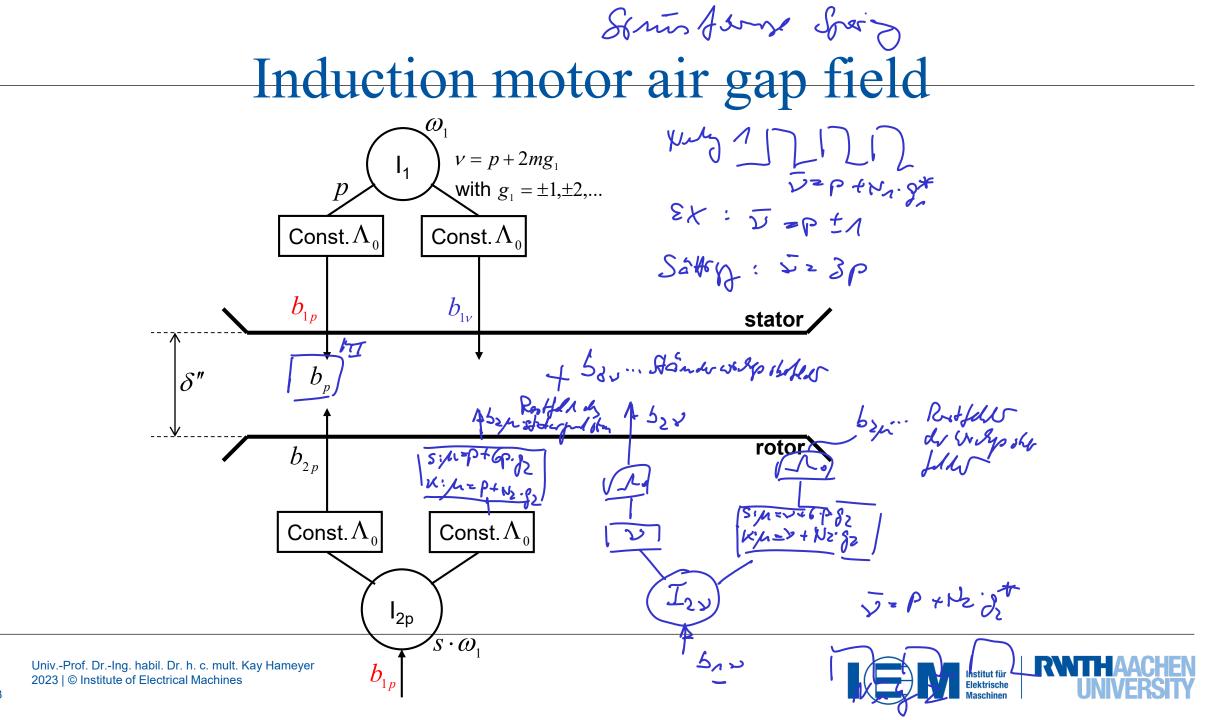
Ę

- Fourier decomposition of air gap field
- Radial rotating force waves
 - oscillation mode r (pole pair number)
 - Frequency f (angular velocity)

$$b_n(x,t) = \sum_i \hat{B}_i \cdot \cos(\nu_i x - \omega_i t - \psi_i)$$
$$\sigma_r(x,t) = \frac{1}{2\mu_0} \left[\sum_i \hat{B}_i \cdot \cos(\nu_i x - \omega_i t - \psi_i) \right]^2$$

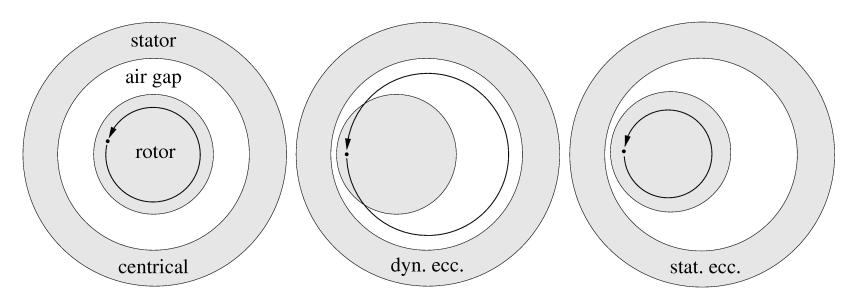
r=1

r=4

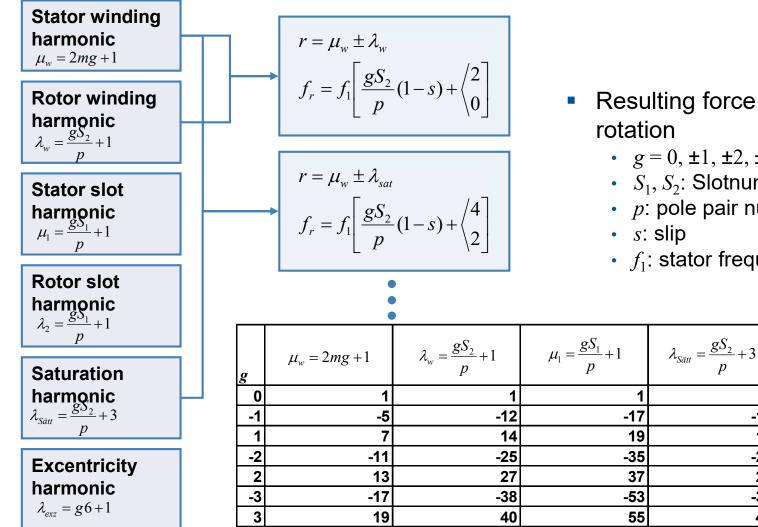

r=2

r=5

r=0


r=3

$$\Rightarrow f_r = f_j \pm f_k, \quad r = v_j \pm v_k$$


Spread sheet tables for noise excitation estimation (induction machine, squirrel cage rotor)

- Rotor fields combined with stator field excited by current with fundamental frequency
- Rotor fields combined with tooth saturation fields
- Rotor fields combined with eccentricity fields (static and dynamic)

Analytical approach (example induction machine)

- Resulting force waves have mode number and direction of
 - $g = 0, \pm 1, \pm 2, \pm 3, \dots$
 - S_1, S_2 : Slotnumber stator resp. rotor

-12

14

-25

27

-38

40

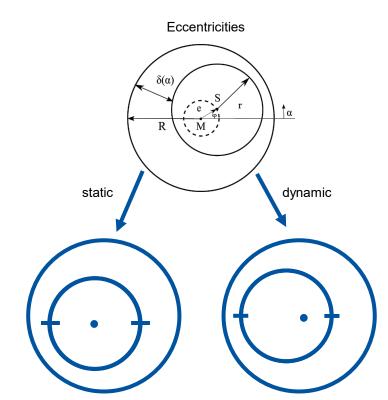
• *p*: pole pair number

• f_1 : stator frequency

Excitation with current of fundamental frequency

No-load operation (s=0)

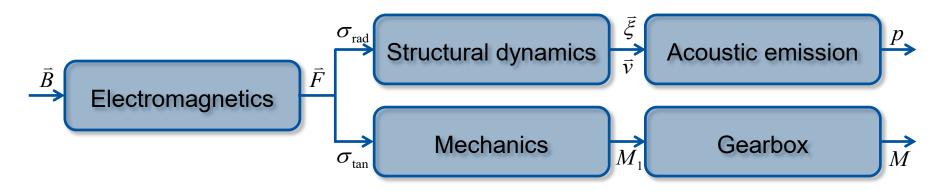
g1 0 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 [H: Wicklungsfelder 1 -5 7 -11 13 -17 19 -23 25 -29 31 -35 37 -41 43 -47 49 -53 55 -59 61 92 nue2 -																									
g1 0 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 [H: Wicklungsfelder 1 -5 7 -11 13 -17 19 -23 25 -29 31 -35 37 -41 43 -47 49 -53 55 -59 61 g2 nue2 -	Läuf	ferrest	felde	r des			nbela	ges																	
Wicklungsfelder 1 -5 7 -11 13 -17 19 -23 25 -29 31 -35 37 -41 43 -47 49 -53 55 -59 61 g2 nue2 . 3 -15 21 -33 39 -51 57 -69 75 -87 93 -105 111 -123 129 -141 147 -159 166 -177 183 nue2 . 0 18 -6 -12 24 -30 42 -48 60 -66 78 -84 96 -102 114 -120 132 -138 150 150 166 177 183 -25 -22 -40 -4 -58 14 -76 32 -94 50 112 68 130 66 146 141 140 -122 124 130 151 132 150 152		armoni	ische	g1/q1	-0.5	0.5		1																	Frequenz
g2 nue1 3 -15 21 -33 39 -51 57 -69 75 -87 93 -105 111 -123 129 -141 147 -159 166 -177 183 nue2				0	<u> </u>	1						<u> </u>					<u> </u>	<u> </u>			-	-			[Hz]
nue2 <th>Wick</th> <th>dungsf</th> <th>felder</th> <th>1</th> <th></th> <th><u> </u></th> <th></th>	Wick	dungsf	felder	1		<u> </u>																			
0 + 6 -12 24 -30 42 -48 60 -66 78 -84 96 -102 114 -120 132 -138 150 -156 168 -174 186 -1 + -22 -40 -4 -58 14 -76 32 -94 50 -112 68 -136 98 -144 116 122 -184 140 -202 158 -360 -25 - -28 -10 -46 8 -64 26 -82 44 -100 62 -118 80 -136 98 -141 116 -122 134 140 -202 158 146 141 140 140 122 208 145 146 146 141 140 122 22 140 158 58 176 76 194 94 212 123 230 130 132 233 142 <th>g2</th> <th>nue1</th> <th></th> <th>3</th> <th>-15</th> <th>21</th> <th>-33</th> <th>39</th> <th>-51</th> <th>57</th> <th>-69</th> <th>75</th> <th>-87</th> <th>93</th> <th>-105</th> <th>111</th> <th>-123</th> <th>129</th> <th>-141</th> <th>147</th> <th>-159</th> <th>165</th> <th>-177</th> <th>183</th> <th></th>	g2	nue1		3	-15	21	-33	39	-51	57	-69	75	-87	93	-105	111	-123	129	-141	147	-159	165	-177	183	
3 - 0 18 -18 36 -54 -54 72 -72 90 -90 108 -108 126 -126 144 -144 162 -162 180 -180 -180 -180 126 -126 148 104 -166 122 -184 140 -020 158 -366 -25 - -28 -10 -46 8 -64 26 -82 44 -100 62 -118 80 -136 98 -154 116 -172 134 -190 152 -208 -466 -25 - -28 46 10 64 -88 2 6100 -44 118 62 154 -98 172 180 98 128 180 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 <		nue2																							
-1 + -22 -40 -4 -58 14 -76 32 -94 50 -112 68 -130 86 -148 104 -166 122 -184 140 -022 158 -366 -25 - -28 -10 -46 8 -64 26 -82 44 -100 62 -118 80 -136 98 -154 116 -172 134 -190 152 -208 466 31 - 28 46 10 64 -8 82 -26 100 -44 118 -62 156 -16 154 -98 172 -110 108 -148 40 -122 103 -166 122 -164 70 -182 88 -200 106 -118 242 -103 -363 -53 - -56 74 38 92 20 110 12 128 146 </th <th>0</th> <th></th> <th>+</th> <th>6</th> <th>-12</th> <th>- 24</th> <th></th> <th>42</th> <th>-48</th> <th></th> <th>-66</th> <th>- 78</th> <th>-84</th> <th>96</th> <th>-102</th> <th>114</th> <th>-120</th> <th>132</th> <th>-138</th> <th>150</th> <th>-156</th> <th>168</th> <th>-174</th> <th>186</th> <th>100</th>	0		+	6	-12	- 24		42	-48		-66	- 78	-84	96	-102	114	-120	132	-138	150	-156	168	-174	186	100
-25 - -28 -10 -46 8 -64 26 -28 44 -100 62 -118 80 -136 98 -154 116 -172 134 -190 152 -208 466 31 - 28 46 10 64 -8 82 -26 100 -44 118 -62 136 -80 154 -93 172 -116 190 -134 208 -152 466 -2 + -50 -68 -32 -86 -14 -104 4 -122 22 -140 40 -158 58 -176 76 -194 94 -212 112 -230 130 -330 -330 -330 -331 -10 134 -28 152 -164 170 -184 94 -212 113 -230 130 -330 -330 -331 -34 146 -52 164 140		3	-			-18												-126		-144	_				0
+ 34 16 52 -2 70 -20 88 -38 106 -56 124 -74 142 -92 160 -110 178 -128 196 -146 214 216 -2 -28 46 10 64 -8 62 -26 100 -44 118 -62 136 -80 154 -98 172 -16 190 -134 208 -152 466. -53 - -56 -38 -74 -20 -92 -2 -100 16 -128 34 -164 52 -164 70 -182 38 -200 -100 -214 -23 -23 -20 -100 -214 -23 -214 -210	-1		+	·	-40	· ·	-58												-166	122		140			-366.67
31 - 28 46 10 64 -8 26 100 -44 118 -62 136 -80 154 -98 172 -16 190 134 208 -152 466. -53 - -56 -38 -74 -20 -92 -2 110 16 120 34 146 52 -164 70 -182 88 -20 100 22 100 -33 -33 -33 -33 -33 -33 -34 -34 -36 -36 -36 -36 -33 -34 -30 -36 -3		-25	-															-154		-172		-190			-466.67
-2 + -50 -68 -32 -86 -14 -104 4 -122 22 -140 40 -158 58 -176 76 -194 94 -212 112 -230 130 633 -53 - -56 -38 -74 -20 -92 -2 110 16 -128 34 -146 52 -164 70 -83 -80 -100 224 -118 24 -30 -30 -33 -33 -34 -46 -52 182 -70 200 -88 218 104 24 -133 -14 -10 -14 -28 152 -46 170 -64 188 -82 206 -100 24 -133 -33 -33 -33 -34 164 -52 182 -70 200 -88 218 102 -14 -33 -4 -90 -21 114 44 -12 -156	1		+	34	16	52	-2	70		88	-38	106	-56		-74	142		160	-110	178	-128	196	-146	214	566.667
-53 - -56 -38 -74 -20 -92 -2 -10 16 -28 34 -146 52 -164 70 -182 88 -200 106 -218 124 -236 -933 59 - 56 74 38 92 20 110 2 128 126 124 164 128 246 170 64 188 62 206 100 224 118 242 1033 59 - 56 74 38 92 20 110 2 128 -16 146 -52 182 -70 200 -88 218 -108 233 -114 -42 133 -12 -16 -16 -174 -182 182 -20 -88 -20 -182 -20 48 -22 -68 -108 -218 -210 -20 -28 -28 -210 -21 -218 -21		31	-			. –				-26										-116		-134			466.667
2 + 62 44 80 26 98 8 116 -10 134 -28 152 -46 170 -64 188 -82 206 -100 224 -118 242 1033 59 - 56 74 38 92 20 110 2 128 -16 146 -34 164 -52 182 -70 200 -88 218 -106 236 -124 933 -81 - -84 -66 114 -42 -132 -24 -150 -6 -188 12 -186 30 -204 48 -222 66 -240 84 -268 -12 -14 -81 - -84 -66 102 -48 120 -30 138 -12 -156 6 -174 24 -192 42 -210 60 -228 78 -246 96 -244 -1 3 + 90 72 108 54 12 174 18	-2		+	-50	-68	-32	-86	-14	-104	4	-122	- 22	-140	40	-158	58	-176	- 76	-194	94	-212	112	-230	130	-833.33
59 - 56 74 38 92 20 110 2 128 -16 146 -34 164 -52 182 -70 200 -88 218 106 236 124 933. -3 + -78 -96 -60 -114 -42 -132 -24 -150 -66 -168 12 -186 30 -204 48 -222 66 240 84 -268 102 -16 -133 -12 -136 -16 -174 -192 -12 -120 60 -228 78 -246 96 -264 -11 -81 - <th< td=""><td></td><td>-53</td><td>-</td><td>-56</td><td>-38</td><td>-74</td><td></td><td>-92</td><td>-2</td><td>-110</td><td>16</td><td></td><td>34</td><td></td><td>52</td><td>-164</td><td></td><td>-182</td><td>88</td><td>-200</td><td>106</td><td>-218</td><td>124</td><td>-236</td><td>-933.33</td></th<>		-53	-	-56	-38	-74		-92	-2	-110	16		34		52	-164		-182	88	-200	106	-218	124	-236	-933.33
-3 + -78 -96 -60 -114 -42 -132 -24 -150 -66 -168 12 -186 30 -204 48 -222 66 -240 84 -258 102 -1 -81 - -84 -66 -102 -48 -120 -30 -138 -12 -156 6 -174 24 -192 42 -210 60 -228 78 -246 96 -264 -1 3 + 90 72 108 54 126 36 144 18 162 0 180 -18 198 -36 216 -54 234 -72 252 -90 270 1 87 - 84 102 66 120 48 138 30 156 12 174 -6 192 -24 210 -42 28 .60 246 .78 264 .96 .117 .46 .92 .214 2 .223 20 .205 .38 .268	2		+	62	44		26	- 98	8	116	-10	134	-28	152	-46	170	-64	188	-82	206	-100	224	-118	242	1033.33
-81 - -84 -66 -102 -48 -12 -13 -12 -156 6 -174 24 -192 42 -210 60 -28 78 -246 96 -264 -114 3 + 90 72 108 54 126 36 144 18 162 0 180 -18 198 -36 216 -54 234 -72 252 -90 270 1 47 - 84 102 66 120 48 138 30 156 12 174 -6 192 -24 210 -42 238 -60 246 -78 264 -90 71 44 + 106 -124 -88 -142 -70 -160 -52 -178 -34 -196 -214 -2 -202 -14 -238 -232 -26 -28 -26 -28 -26 -26		59	-	56		- 38	92	20		2	128	-16		-34		-52	182	-70	200	-88	218	-106	236	-124	933.333
3 + 90 72 108 54 126 36 144 18 162 0 180 -18 198 -36 216 -54 234 -72 252 -90 270 1 4 - 84 102 66 120 48 138 30 156 12 174 -6 192 -24 210 -42 228 -60 246 -78 264 -96 1 -4 + -106 -124 -88 -142 -70 -160 -52 -178 -34 -196 -16 -214 2 -232 20 -250 38 -268 -56 -286 74 -176 -109 - 112 -94 -130 -76 -148 -58 -166 -40 -184 -22 -202 -4 -200 14 -238 32 -256 50 -274 68 -292 -188 4 + 118 100 136 82 156 12<	-3		+	-78		-60	-114	-42	-132		-150	-6	-168	12	-186	30	-204		-222	66	-240	84	-258		-1300
87 - 84 102 66 120 48 138 30 156 12 174 -6 192 -24 210 -42 228 -60 246 -78 264 -96 1 -4 + -106 -124 -88 -142 -70 -160 -52 -178 -34 -196 -214 2 -232 20 -250 38 -268 56 -286 74 -176 -109 - -112 -94 -130 -76 -148 -58 -166 -40 -184 -22 -202 -4 -200 14 -28 32 -256 50 -274 68 -292 -186 -109 - -118 100 136 82 156 142 146 190 28 208 10 226 -8 244 -26 262 -44 208 -244 28 -14 266 -274 68 292 186 115 - 112 130		-81	-	-84		-102				-138	-12		6												-1400
-4 ++ -106 -124 -88 -142 -70 -160 -52 -178 -34 -196 -16 -214 2 -232 20 -250 38 -268 56 -286 74 -178 -109 - -112 -94 -130 -76 -148 -58 -166 -40 -184 -22 -202 -4 -200 14 -238 32 -256 50 -274 68 -292 -186 4 + 118 100 136 82 154 64 172 46 190 28 208 10 226 -8 244 -26 262 -44 280 -62 298 1966 115 - 112 130 94 148 76 166 58 184 40 202 22 20 4 238 -14 266 -32 274 -60 292 -68 142 -26 -24 -24 -26 -24 -40 20 22	3		+	90	- 72	108	54	126	- 36	144	18	162	0	180	-18	198	-36	216	-54	234	-72	252	-90	270	1500
-109 - -112 -94 -130 -76 -148 -58 -166 -40 -184 -22 -202 -4 -220 14 -238 32 -256 50 -274 68 -292 -188 4 + 118 100 136 82 154 64 172 46 190 28 208 10 226 -8 244 -26 262 -44 280 -62 298 1968 115 - 112 130 94 148 76 166 58 184 40 202 220 4 238 -14 256 -32 274 -50 292 -68 148 -148 148 -62 292 -68 244 -26 262 -44 280 -62 298 1968 115 - 112 130 94 148 76 168 58 184 40 202 220 4 238 -14 256 -32 274 -50 <td< th=""><th></th><th>87</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1400</th></td<>		87	-													-24									1400
4 + 118 100 136 82 154 64 172 46 190 28 208 10 226 -8 244 -26 262 -44 280 -62 298 1966 115 - 112 130 94 148 76 166 58 184 40 202 22 20 4 238 -14 256 -32 274 -50 292 -68 1866 -5 + +159 -177 -141 -195 +123 -213 +105 -231 -87 -249 -69 -267 -51 -285 -33 -303 -15 -321 3 -339 21 -223	-4		+	-106	-124	-88	-142	-70		-52	-178	-34	-196	-16	-214	2	-232	20	-250	- 38	-268		-286	- 74	-1766.7
115 - 112 130 94 148 76 166 58 184 40 202 22 220 4 238 -14 256 -32 274 -50 292 -68 1866 -5 + -159 -177 -141 -195 -123 -105 -231 -87 -249 -69 -267 -51 -285 -33 -303 -15 -321 3 -339 21 -223		-109	-	-112	-94	-130	-76		-58		-40	-184	-22	-202	-4	-220	14	-238	32		50	-274			-1866.7
-5 + -159 -177 -141 -195 -123 -213 -105 -231 -87 -249 -69 -267 -51 -285 -33 -303 -15 -321 -3 -339 -21 -223	4		+	118		136				172		190				226		244			-44	280		298	1966.67
		115	-																						1866.67
137 - 115 -97 133 -79 151 -61 169 43 187 -25 205 -7 223 11 241 29 259 47 277 65 295 295	-5		+	-159	-177	-141		· ,	-213	-105	-231	-87			-267		-285	-33	-303	-15	-321	3	-339		-2233.3
		-137	-	-115	-97	-133		-151	-61	-169	-43	-187	-25	-205	-7	-223	11	-241	- 29	-259	47	-277	65	-295	-2333.3
	5		+	121	103	139	85	157	67	175	49	193	31		13	229		247	-23	265	-41	283		301	2433.33
		143	-	165	183	147		129	219	111		93		- 75	273	57						_			2333.33
	-6		+	-215	-233				-269	-161	-287	-143			-323	-107	-341	-89	-359		-377				-2700
		-165	-	-115	-97	-133	-79		-61		-43	-187					11	-241			47	-277			-2800
	6		+	121			85				49	193						247				283		301	2900
		171	-																						2800
	-7		+	-271	-289	-253	-307	-235	-325	-217	-343	-199			-379	-163	-397	-145	-415	-127	-433	-109	-451	-91	-3166.7
		-193	-	-115					-61												47				-3266.7
7 + 121 103 139 85 157 67 175 49 193 31 211 13 229 -5 247 -23 265 -41 283 -59 301 3368	7		+	121	103	139	85	157	67	175	49	193	31	211	13	229	-5	247	-23	265	-41	283	-59	301	3366.67
199 - 277 295 259 313 241 331 223 349 205 367 187 385 169 403 151 421 133 439 115 457 97 3268		199	-	277	295	259	313	241	331	223	349	205	367	187	385	169	403	151	421	133	439	115	457	97	3266.67



Tooth saturation

Läufe	errestf	elder	der Z	ahnsä	ittigu	ngsfel	lder																	
Nutha	armoni	sche	g1/q1	-0.5	0.5	-1	1	-1.5	1.5	-2	2	-2.5	2.5	-3	3	-3.5	3.5	-4	4	-4.5	4.5	-5	5	Frequenz
g1			0	-1	1	-2	2	-3	3	-4	4	-5	5	-6	6	-7	- 7	-8	8	-9	9	-10	10	[Hz]
Wick	lungsfe	elder	1	-5	- 7	-11	13	-17	19	-23	- 25	-29	31	-35	37	-41	43	-47	49	-53	55	-59	61	
g2	nue1		3	-15	21	-33	39	-51	57	-69	75	-87	93	-105	111	-123	129	-141	147	-159	165	-177	183	
	nue2																							
0		+	6	-12	24	-30	42	-48	60	-66	78	-84		-102	114	-120	132	-138	150	-156		-174	186	200
	3	-	0	18	-18	- 36	-36	54	-54	72	-72	90	-90	108	-108	126	-126	144	-144	162	-162	180	-180	100
-1		+	-16	-34	2	-52	20	-70	38	-88	56	-106	74	-124	92	-142	110	-160			146	-196	164	-266.667
	-19	-	-22	-4	-40	14	-58	32	-76	50	-94	68	-112	86	-130		-148	122	-166		-184	158	-202	-366.667
1		+	40	22	58	4	76	-14	94	-32	112	-50	130	-68	148	-86	166	-104	184		202	-140	220	666.6667
	-37	-	34	52	16	70	-2	88	-20	106	-38	124	-56	142	-74	160	-92	178	-110	196	-128	214	-146	
-2		+	-44	-62	-26	-80	-8	-98	10	-116	28	-134	46	-152	64	-170	82	-188	100	-206	118	-224	136	-733.333
	-47	-	-50	-32	-68	-14	-86		-104	22	-122	40	-140	58	-158		-176	94	-194	112	-212	130	-230	
2		+	68	50	86	32	104	14	122	-4	140	-22	158	-40	176	-58	194	-76	212	-94	230	-112	248	1133.333
	65	-	62	80	44	98	26	116	8	134	-10	152	-28	170	-46	188	-64	206	-82	224	-100	242	-118	
-3		+	-72	-90	-54	-108	-36	-126	-18	-144	0	-162	18	-180	36	-198	54	-216	72	-234	90	-252	108	-1200
	-75	-	-78	-60	-96	-42	-114	-24	-132	-6	-150	12	-168			48	-204	66	-222	84	-240	102	-258	-1300
3		+	96	78	114	60	132	42	150	24	168	6	186	-12	204	-30	222	-48	240	-66	258	-84	276	1600
	93	-	90	108	72	126	54	144	36	162	18	180	0	198	-18	216	-36	234	-54	252	-72	270	-90	
-4		+	-100	-118	-82	-136	-64	-154	-46	-172	-28	-190	-10	-208	8	-226	26	-244	44	-262	62	-280	80	-1666.67
	-103	-	-106		-124	-70	-142	-52	-160	-34	-178	-16			-214	20	-232	- 38	-250	56	-268	- 74	-286	
4		+	124	106	142	88	160	70	178	52	196	34	214	16	232	-2	250	-20	268	-38	286	-56	304	2066.667
	121	-	118	136	100	154	82	172	64	190	46	208	28	226	10	244	-8	262	-26	280	-44	298	-62	
-5		+	-147	-165	-129	-183	-111	-201	-93	-219	-75	-237	-57	-255	-39	-273	-21	-291	-3	-309	15	-327	33	-2133.33
	-131	-	-115		-133	-79	-151	-61	-169	-43	-187	-25	-205	-7	-223	11	-241	29	-259	47	-277	65	-295	
5		+	133	115	151	97	169	79	187	61	205	43	223	25	241	7	259	-11	277	-29	295	-47	313	2533.333
	149	-	165	183	147	201	129	219	111	237	93	255	75	273	57	291	39	309	21	327	3	345	-15	
-6		+	-203	-221	-185	-239	-167	-257	-149	-275	-131	-293	-113	-311	-95	-329	-77	-347	-59	-365	-41	-383	-23	-2600
	-159	-	-115		-133	-79	-151	-61	-169	-43	-187	-25	-205			11	-241	29	-259	47	-277	65	-295	-2700
6		+	133	115	151	97	169	79	187	61	205	43	223	25	241	7	259	-11	277	-29	295	-47	313	3000
	177	-	221	239	203	257	185	275	167	293	149	311	131	329	113	347	95	365	- 77	383	59	401	41	2900
-7		+	-259	-277	-241	-295	-223	-313	-205	-331	-187	-349	-169	-367	-151	-385	-133	-403	-115	-421	-97	-439	-79	-3066.67
	-187	-	-115		-133	-79	-151	-61	-169	-43	-187	-25	-205	-7	-223	11	-241	29	-259	47	-277	65	-295	
7		+	133	115	151	97	169	79	187	61	205	43	223	25	241	7	259	-11	277	-29	295	-47	313	3466.667
	205	-	277	295	259	313	241	331	223	349	205	367	187	385	169	403	151	421	133	439	115	457	97	3366.667

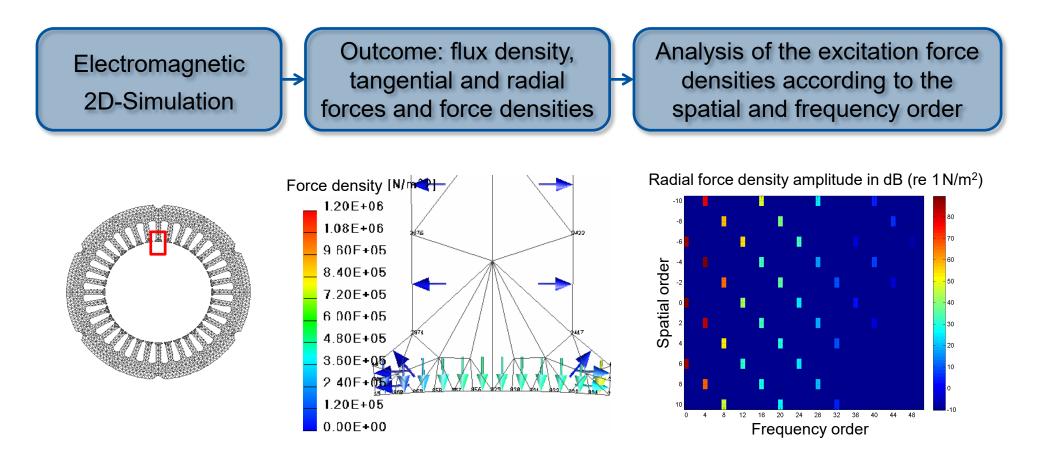
Excentricity



แกล	rmon	ische g		-0.5	0.5	-1	1	-1.5	1.5	-2	2	-2.5	2.5	-3	3	-3.5	3.5	-4	4	-4.5	4.5	-5	5	110000100	Freque
			0	-1	1	-2	2	-3	3	-4	4	-5	5	-6	6	-7	7	-8	8	-9	9	-10	10	[Hz]	[Hz]
	lungsf	elder	1	-5	(-11	13	-17	19	-23	25	-29	31	-35	37	-41	43	-47	49	-53	55	-59	61		
	nue1		3	-15	21	-33	39	-51	57	-69	75	-87	93	- 105	111	-123	129	-141	147	- 159	165	-177	183	statisch	dynam
	nue2			4.4	05		40	47	0.1	0.5	70		07	40.4	4.45	110	400	407	454	455	100	470	407	100	440.0
U		+	7	-11	25	-29	43	-47	61	-65	79	-83		-101	115	-119	133	-137	151		169	-173	187	100	116.6
	4	-	1	19	- 17	37	- 35	55	-53	73	-71	91	- 89	109	-107	127	-125	145	-143		-161	181	-179	0	16.66
U		+	5	-13	23	-31	41	-49	59	-67	77	-85	95	-103	113	-121	131	-139	149	-157	167	-175	185	100	83.33
_	2	-	-1	17	- 19	35	-37	53	- 55	71	-73	89	-91		-109	125	-127	143	-145		-163	179	-181	0	-16.66
-1		+	-21	-39	-3	-57	15	-75	33	-93	51	-111	69	- 129	87	- 147	105	- 165	123	- 183	141	-201	159	-366.667	-
	-24	-	-27	-9	-45	9	-63	27	-81	45	- 99		-117		-135	99	-153		-171		-189	153	-207	-466.667	-
-1		+	35	17	53	-1	71	-19	89	-37	107	-55	125	-73	143	-91	161	- 109	179	-127	197	- 145	215		
_	32	-	29	47	11	65	-7	83	- 25	101	-43	119	-61	137	-79	155	-97	173	-115	191	-133	209	-151	466.6667	
- 1		+	- 23	-41	-5	-59	13	-77	31	-95	49	-113	67	-131	85	- 149	103	- 167	121	- 185	139	-203	157	-366.667	-
	-26	-	- 29	-11	-47	7	-65	25	-83	43	-101		-119		-137	97	-155	115	-173		-191	151	-209		-
1		+	33	15	51	-3	69	-21	87	-39	105	-57	123	-75	141	-93	159	-111	177	-129	195	- 147	213	566.6667	
	30	-	27	45	9	63	-9	81	- 27	99	-45	117	-63	135	-81	153	- 99	171	-117		-135	207	-153	466.6667	
-2		+	-49	-67	-31	-85	- 13	- 103	5	-121	23	- 139	41	- 157	59	-175	77	- 193	95	-211	113	-229	131	-833.333	-816.6
	-52	-	- 55	-37	-73	-19	-91		-109		-127		-145		-163	71	-181	89	-199		-217	125	-235	-933.333	-916.6
-2		+	63	45	81	27	99	9	117	-9	135	-27	153	-45	171	-63	189	-81	207	-99	225	-117	243		1016
	60	-	57	75	39	93	21	111	3	129	- 15	147	-33	165	-51	183	-69	201	-87	219	-105	237	-123	933.3333	916.6
-2		+	-51	-69	-33	-87	- 15	- 105	3	- 123	21	- 141	39	- 159	57	- 177	75	- 195	93	-213	111	-231	129		-816.6
_ L	-54	-	-57	-39	-75	-21	- 93	-3	-111	15	-129	- 33	-147		-165	69	-183	87	-201	105	-219	123	-237	-933.333	-916.6
2		+	61	43	79	25	97	7	115	-11	133	-29	151	-47	169	-65	187	-83	205		223	- 119	241	1033.333	1016
	58	-	55	73	37	91	19	109	1	127	- 17	145	- 35	163	- 53	181	-71	199	- 89	217	-107	235	-125		916.6
-3		+	-77	-95		-113	-41	-131	-23	- 149	-5	- 167	13	- 185	31	-203	49	-221	67	-239	85	-257	103	-1300	-1283.
L 1	-80	-	- 83	-65	-101	-47	-119	-29	-137	-11	-155	7	-173	25	-191	43	-209	61	-227	79	-245	97	-263	-1400	-1383.
- 3		+	91	73	109	55	127	37	145	19	163	1	181	-17	199	-35	217	-53	235	-71	253	-89	271	1500	1483
	88	-	85	103	67	121	49	139	31	157	13	175	-5	193	- 23	211	-41	229	- 59	247	-77	265	- 95	1400	1383.
-3		+	-79	-97	-61	-115	-43	- 133	- 25	- 151	-7	- 169	11	- 187	29	-205	47	-223	65	-241	83	-259	101	-1300	-1283.
L	-82	-	- 85	-67	-103	-49	-121	-31	-139	-13	-157	5	-175	23	-193	41	-211	59	-229	- 77	-247	95	-265	-1400	-1383.
- 3		+	89	71	107	53	125	35	143	17	161	-1	179	-19	197	-37	215	-55	233	-73	251	-91	269	1500	1483
	86	-	83	101	65	119	47	137	29	155	11	173	-7	191	- 25	209	-43	227	-61	245	-79	263	- 97	1400	1383
-4		+	-105	- 123	-87	-141	-69	- 159	-51	-177	-33	- 195	- 15	-213	3	-231	21	-249	39	-267	57	-285	75	-1766.67	-1
	-108	-	-111	-93	-129	-75	-147	-57	-165	-39	-183	-21	-201	-3	-219	15	-237	- 33	-255	51	-273	69	-291	-1866.67	-1
4		+	119	101	137	83	155	65	173	47	191	29	209	11	227	-7	245	-25	263	-43	281	-61	299	1966.667	1
	116	-	113	131	95	149	- 77	167	59	185	41	203	23	221	5	239	- 13	257	-31	275	-49	293	-67	1866.667	1
-4		+	-107	- 125	-89	- 143	-71	-161	-53	-179	-35	- 197	- 17	-215	1	-233	19	-251	37	-269	55	-287	73	-1766.67	-1
	-110	-	-113	-95	-131	-77	-149	-59	-167	-41	-185	-23	-203	-5	-221	13	-239	31	-257	49	-275	67	-293	-1866.67	-1
4		+	117	99	135	81	153	63	171	45	189	27	207	9	225	-9	243	-27	261	-45	279	-63	297	1966.667	1
	114	-	111	129	93	147	75	165	57	183	39	201	21	219	3	237	- 15	255	-33	273	-51	291	-69	1866.667	1
-5		+	-133	- 151	-115	-169	-97	- 187	-79	-205	-61	-223	-43	-241	- 25	-259	-7	-277	11	-295	29	-313	47	-2233.33	-2216
	-136	-	-139	-121	-157	- 103	-175	-85	-193	-67	-211	-49	-229	-31	-247	-13	-265	5	-283	23	-301	41	-319	-2333.33	-2316
-5		+	147	129	165	111	183	93	201	75	219	57	237	39	255	21	273	3	291	-15	309	-33	327	2433.333	2416
	144	-	141	159	123	177	105	195	87	213	69	231	51	249	33	267	15	285	-3	303	-21	321	- 39	2333.333	2316.
-5		+	-135	- 153	-117	-171	- 99	- 189	-81	-207	-63	-225	-45	-243	-27	-261	-9	-279	9	-297	27	-315	45	-2233.33	-2216
	-138	-	-141	- 123	-159	- 105	-177	-87	-195	-69	-213	-51	-231	-33	-249	-15	-267	3	-285	21	-303	39	-321	-2333.33	-2316
-5		+	145	127	163	109	181	91	199	73	217	55	235	37	253	19	271	1	289	-17	307	-35	325	2433.333	2416
	142	-	139	157	121	175	103	193	85	211	67	229	49	247	31	265	13	283	-5	301	-23	319	-41	2333.333	2316
-6		+	-161		-143	- 197	-125	-215	-107	-233	- 89	-251	-71	-269	-53	-287	-35	-305	- 17	-323	1	-341	19	-2700	-2683
-	-164	-	-167	- 149	-185	-131	-203	-113	-221	-95	-239	-77	-257	-59	-275	-41	-293	-23	-311	-5	-329	13	-347	-2800	-2783
6		+	175	157	193	139	211	121	229	103	247	85	265	67	283	49	301	31	319	13	337	-5	355	2900	2883
Ň	172	-	169	187	151	205	133	223	115	241	97	259	79	277	61	295	43	313	25	331	7	349	-11	2800	2783
-6	172	+	-163		-145	- 199	-127	-217	-109	-235	-91	-253	-73	-271	-55	-289	-37	-307	- 19	-325	-1	-343	17	-2700	-2683
10	-166					- 133	-205		-223	-233	-241	-255	-259	-271	-277	-209	-295	-25	-313	-325	-331	11	-349		-2003
6	- 100	+	173	155	191	137	209	119	227	101	245	-79	263	65	281	47	299	-23	317	-/	335	-7	353	2900	2883
		Ŧ	175	1.00	191	1.57	209	119	221	101	240	03	200	00	201	47		29	- 217		- 222	-1		 Z900 	i ∠003

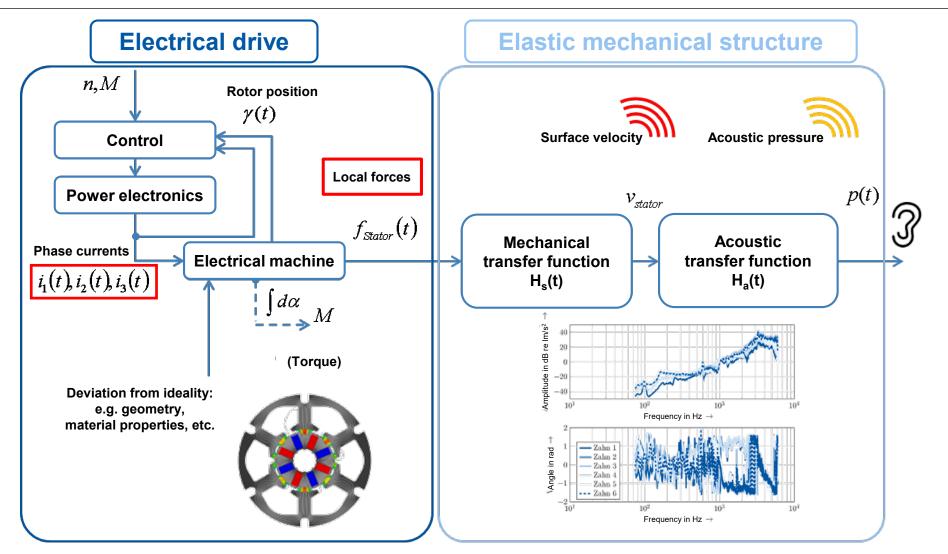
What about tangential forces?

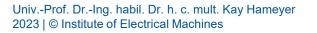
Force density in electrical machines


- Knowing the air gap flux density function is important to calculate the forces that act upon the stator
- In general, the force density can be determined from the air gap field with the aid of Maxwell's stress tensor:

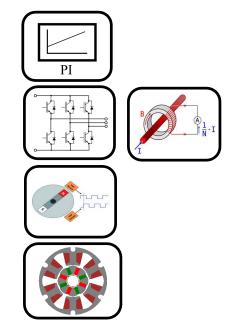
$$\sigma_{\text{tan}}(\varphi,t) = \frac{1}{\mu_0} \cdot B_{\text{rad}}(\varphi,t) \cdot B_{\text{tan}}(\varphi,t)$$

$$\sigma_{\rm rad}(\varphi,t) \approx \frac{1}{2\mu_0} \cdot B_{\rm rad}^2(\varphi,t)$$



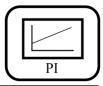

Electromagnetic simulation: Forces are the excitation of the structure dynamic model

Overall drive train model

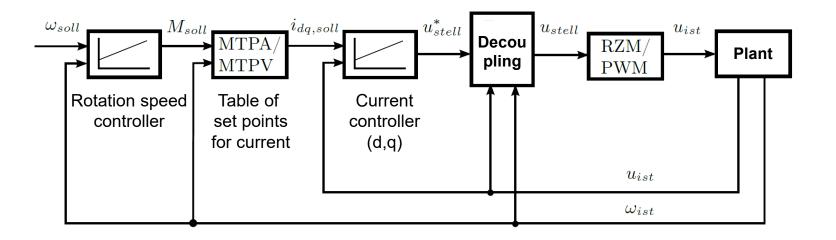


21

Components of the drive train

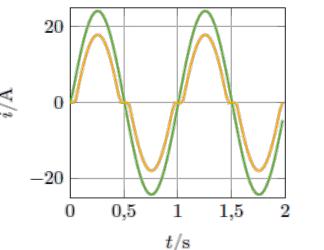

.... have influence on the excitation

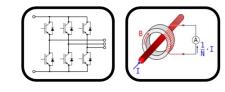
- Control
- Power electronics + sensors
- Position and rotation speed measurement
- Electrical machine

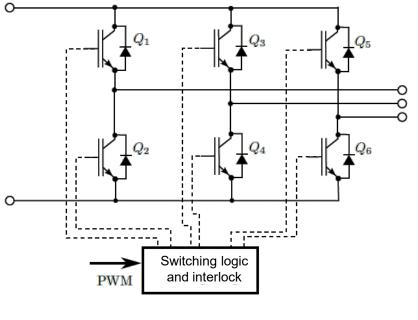

Non-ideal component properties and production tolerances cause deviations when compared to ideal simulations

.... has influence on the excitation

- Control variable: position, speed, torque
- Standardized controller structure for industrial drives: cascade control
- The controller structure and settings directly influence the behavior of the machine, i.e.
 - Controlled speed
 - Transient response of control variables

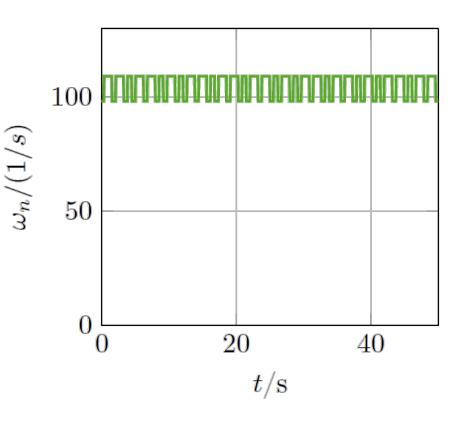





Power electronic supply

.... has influence on the excitation

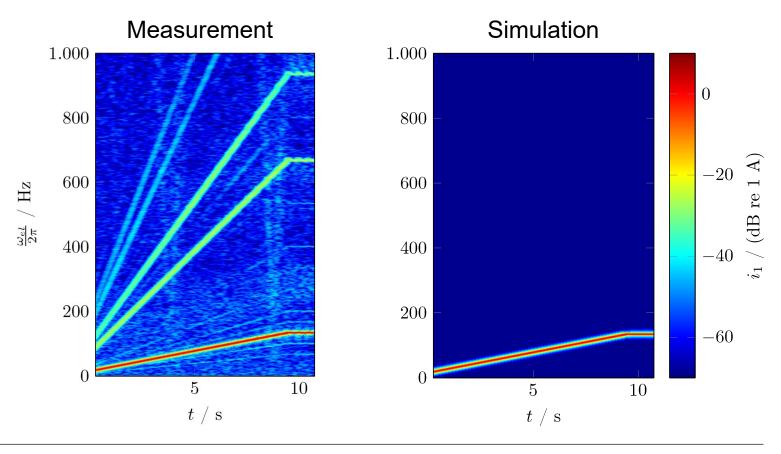
- The settings of the power supply of an electrical machine, specified by the control
- Control via PWM and switching logic
- The properties of the inverter are not ideal:
 - Parasitic semiconductor property (Turn-on and -off behavior)
 - Turn-on delay due to dead-time
 - Noise behavior of the current sensors



Sensors for speed or position

.... have influence on the excitation

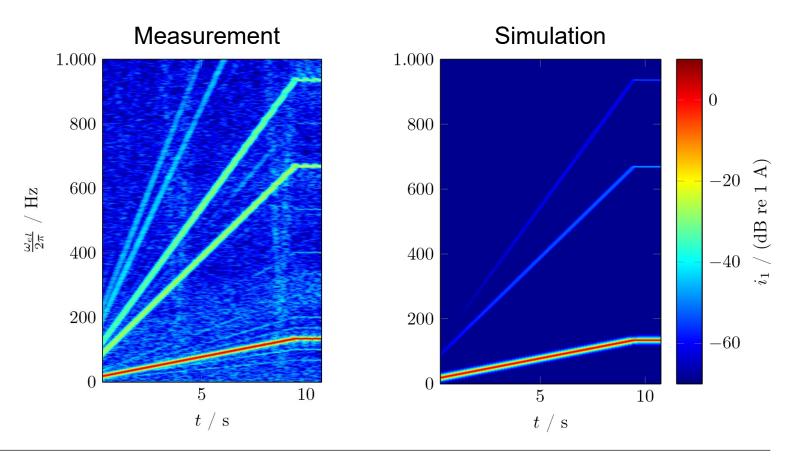
- Rotary encoders used in the industry and their non-ideal properties:
 - Incremental encoder (rotation speed measurement): resolution
 - Phase-angle sensor (position detection): resolution
 - Resolver (position detection): noise behavior
- Position detection: the speed is composed with the difference quotient ${}^{\Delta\gamma}\!/_{\Delta T}$
- Speed measurement: the position is calculated by integrating the speed $\omega \; \Delta T$



Run-up simulation of drive train with fundamental wave model

Electrical drive: Spectrogram phase current

- Fundamental wave model
 - A single frequency within the spectrum (fundamental frequency of the currents)

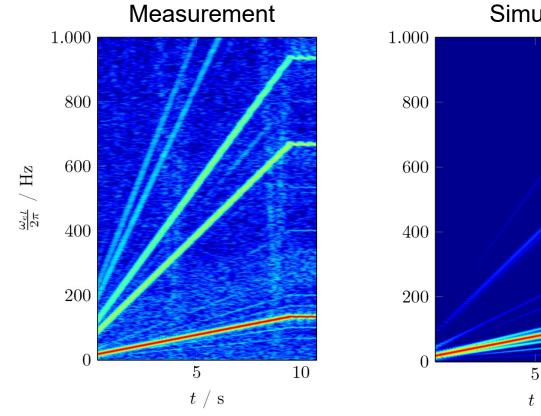


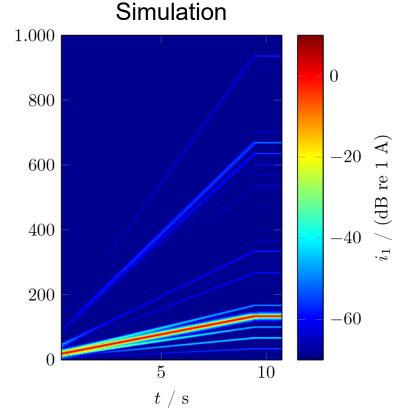
ΡТ

Run-up simulation of drive train with extended model

Electrical drive: Spectrogram phase current

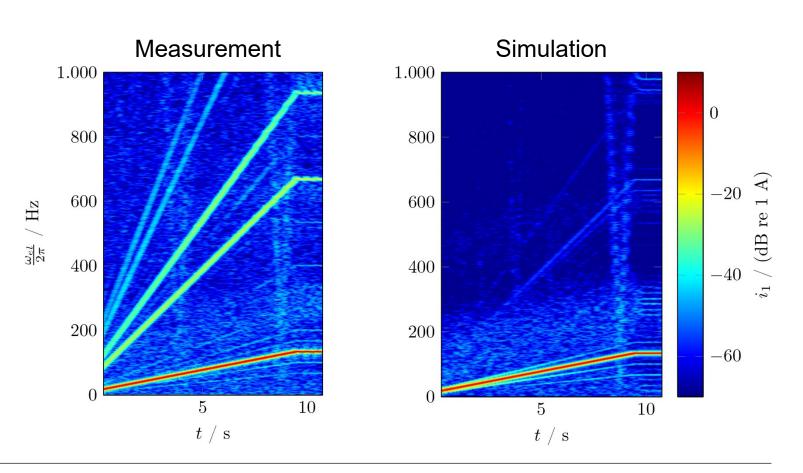
- Extended model:
 - Fundamental wave -5. and +7. current harmonic

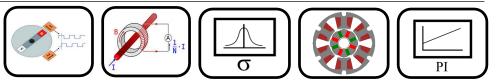



Run-up simulation of drive train with extended frequency model considering bearing tolerances

Electrical drive: Spectrogram phase current

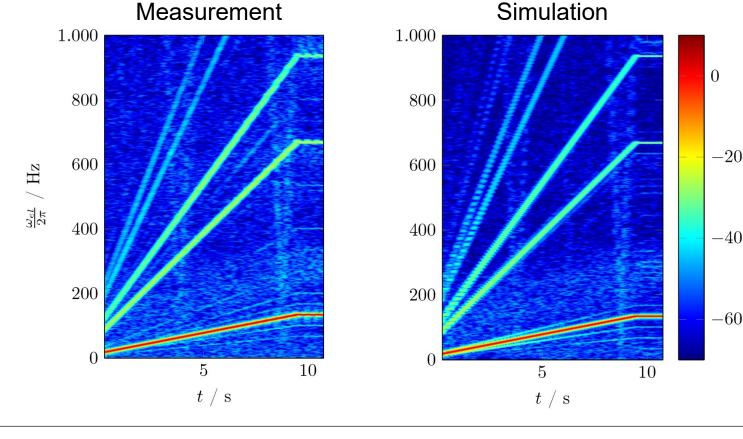
- Extended model:
 - Fundamental wave -5. and +7. current harmonic
 - Manufacturing tolerance: Magnetization tolerance + static eccentricity



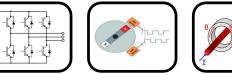

Run-up simulation of drive train with extended frequency model considering bearing tolerances and signal noise of sensors

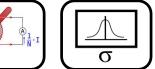
Electrical drive: Spectrogram phase current

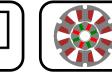
- Extended model:
 - Fundamental wave -5. and +7. current harmonic
 - Manufacturing tolerance: Magnetization tolerance + static eccentricity
 - Noise due to rotary encoders and current sensors

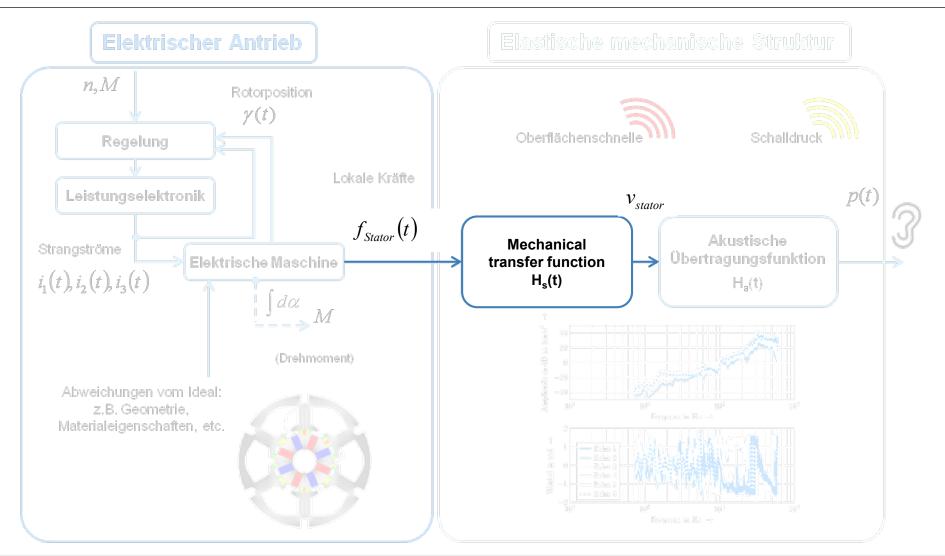


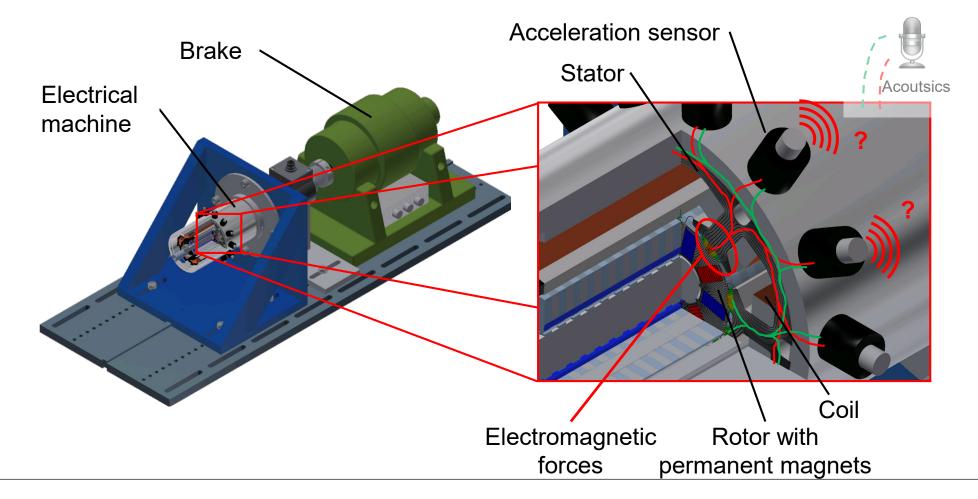
Run-up simulation of drive train with extended frequency model considering bearing tolerances, signal noise of sensors and behavior of power electronic semiconductors


Electrical drive: Spectrogram phase current


- Extended model:
 - Fundamental wave -5. and +7. current harmonic
 - Manufacturing tolerance: Magnetization tolerance + static eccentricity
 - Noise due to rotary encoders and current sensors
 - Consideration of the dead-time of the converter

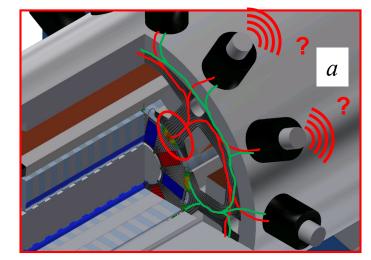

30

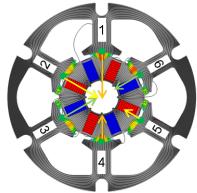



dB re 1

Mechanical transfer function

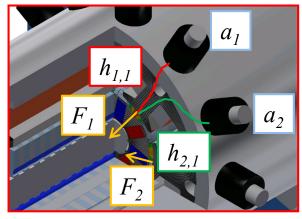
Determination by measurements

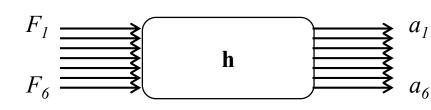


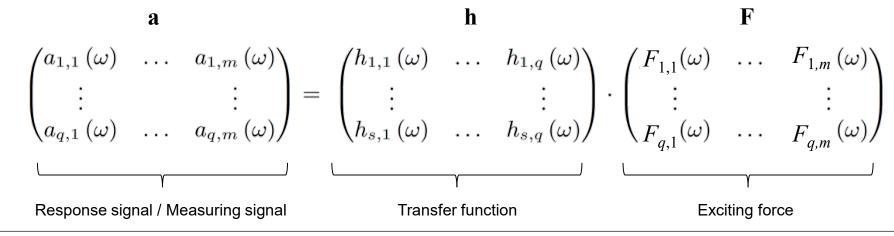

Institut für Elektrische

Evaluation of the measurements

- **Goal:** Transfer function of the forces in teeth with respect to the surface acceleration *a* at arbitrary point of measurement
- Force excitation should be possible for the target application in a completely assembled state


→ Machine as the source of the force excitation




Mathematical evaluation

Decoupling of transfer functions

- a: Measuring signal
- *h*: Transfer function
- F: Tooth force
- *q*: Tooth number
- *m*: Measuring number
- s: Sensor number

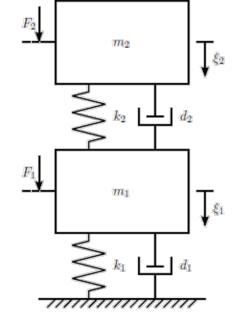
Univ.-Prof. Dr.-Ing. habil. Dr. h. c. mult. Kay Hameyer 2023 | $\textcircled{\mbox{\scriptsize C}}$ Institute of Electrical Machines

Multi-mass-system

Structure dynamic simulation

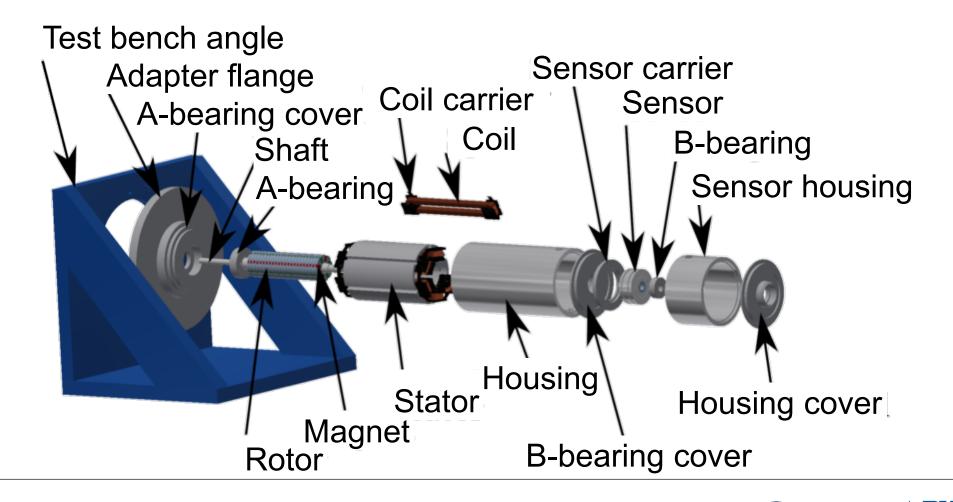
• The displacement ξ of individual nodes that is caused by the forces *F* leads to stator deformation

Depends on the characteristics of the structure

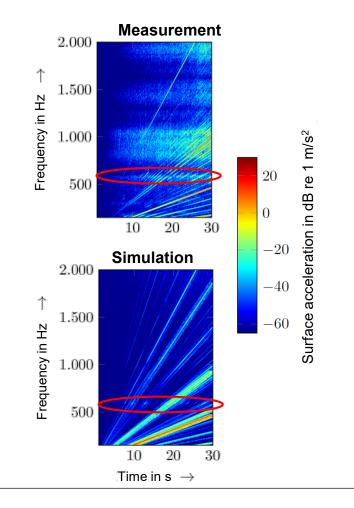

(Material, construction, manufacturing, etc.)

• General equation of movement in differential state:

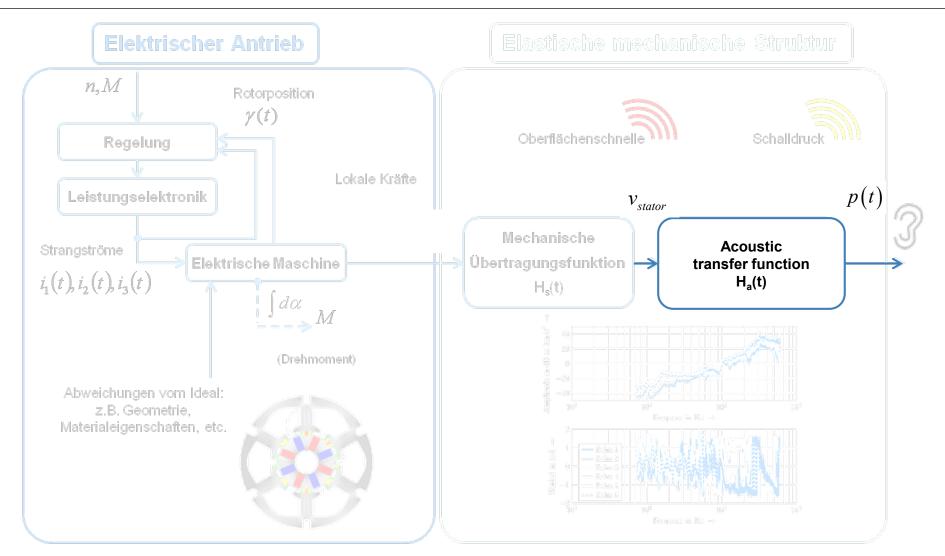
 $\mathbf{M} \cdot \underline{\ddot{\xi}}(t) + \mathbf{D} \cdot \underline{\dot{\xi}}(t) + \mathbf{K} \cdot \underline{\ddot{\xi}}(t) = \underline{F}(t)$


- M: Inertia matrix
- D: Damping matrix
- K: Stiffness matrix
- ξ : Node shift
- F: Node forces
- The time harmonic case: _

$$\frac{\dot{\underline{\xi}}(t) = \frac{\mathrm{d}\underline{\overline{\xi}}(t)}{\mathrm{d}t} = j\omega\underline{\overline{\xi}}(t) = v(t)$$
$$\ddot{\underline{\xi}}(t) = \frac{\mathrm{d}^{2}\underline{\overline{\xi}}(t)}{\mathrm{d}t^{2}} = -\omega^{2}\underline{\overline{\xi}}(t) = a(t)$$
$$\left(\mathbf{K} + j\omega\mathbf{D} - \omega^{2}\mathbf{M}\right)\cdot\underline{\overline{\xi}}(t) = \underline{\overline{F}}(t)$$


Structural model calculation: Machine model

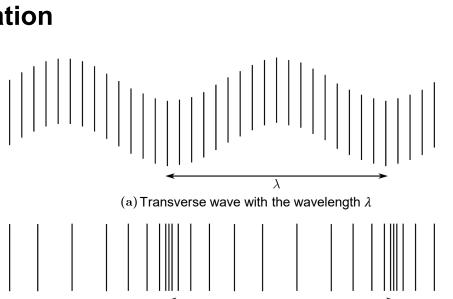
Mechanical transfer function


Example: Surface acceleration in radial direction

- Acceleration process of a machine with
 n = 0 ... 3500 min⁻¹ with a load of M = 1 Nm
- The model with the measured transfer functions indicates a good representation of mechanical properties of the drive train
- The measured transfer functions can be identified with relatively small effort
- For the identification of the transfer functions, the presented timetransient drive model for the calculation of teeth forces is necessary

Acoustic transfer function

Acoustic transfer function

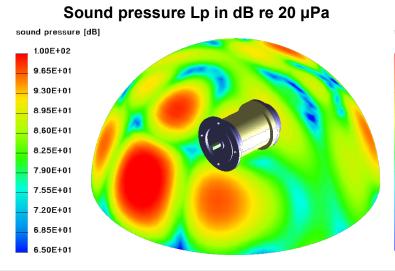

Determination of the acoustic transfer function for the simulation

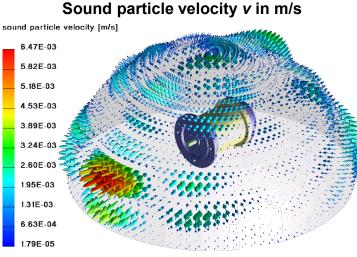
- General wave equation:
- $\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$
- Helmholtz equation in differential form (PDE) for the sound pressure in time-harmonic form:
 - $\nabla^2 \underline{p} + k^2 \underline{p} = 0$
 - *p:* Sound pressure

- c: Sound pressure
- c: Sound velocity
$$\rightarrow c = \lambda \cdot f = \lambda \cdot \frac{\omega}{2\pi} = \frac{\omega}{k}$$

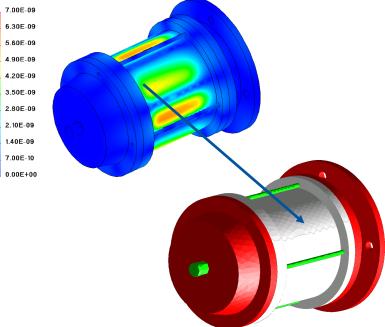
- k: Wave number
- ∇^2 : Laplace-operator
- Sound pressure *p* can be identified with the system matrixes H and G from the local surface velocity *v*:

$$\mathbf{\dot{H}} \cdot \underline{p} = \mathbf{G} \cdot \underline{\vec{v}}$$
 with $\underline{\vec{v}} = 2\pi \cdot f \cdot \underline{\vec{\xi}}$

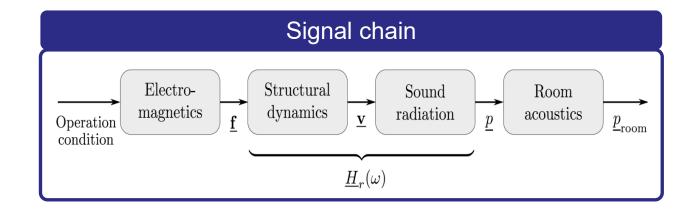


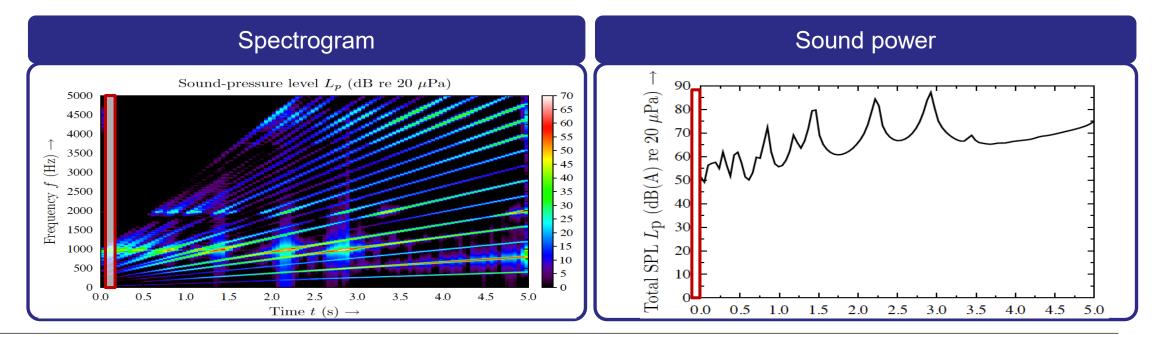

λ

(b) Longitudinal wave with the wavelength λ


Acoustic transfer function

- Example for an acoustic simulation:
 - The acoustic model encompasses merely of the (simplified) machine surface
 - The deformation of the surface of the structural dynamics simulations is transformed to the surface of the acoustic model
 - Calculation of the sound pressure level, that is the sound particle velocity at a certain distance (in this case: 1 m)

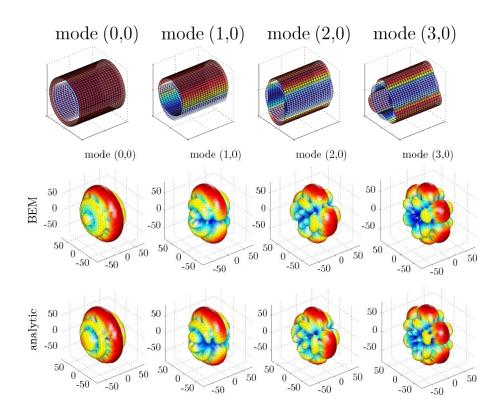

Deformation in m

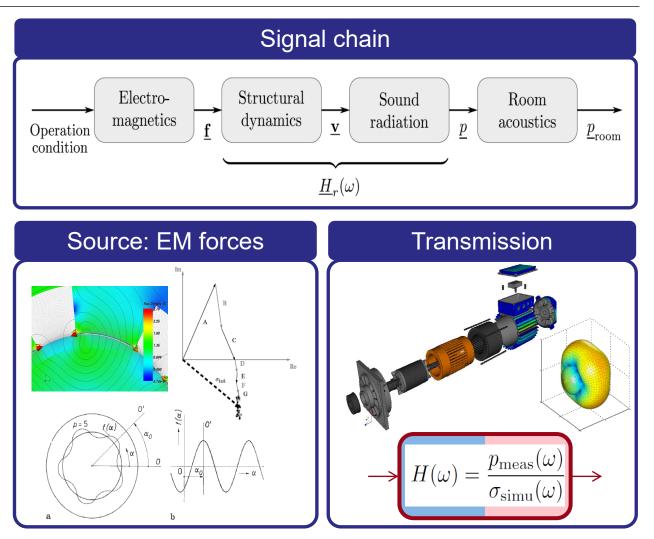

Example for the proposed approach

Run-up of a synchronous machine

Institut für

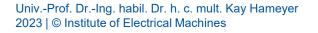
Elektrische

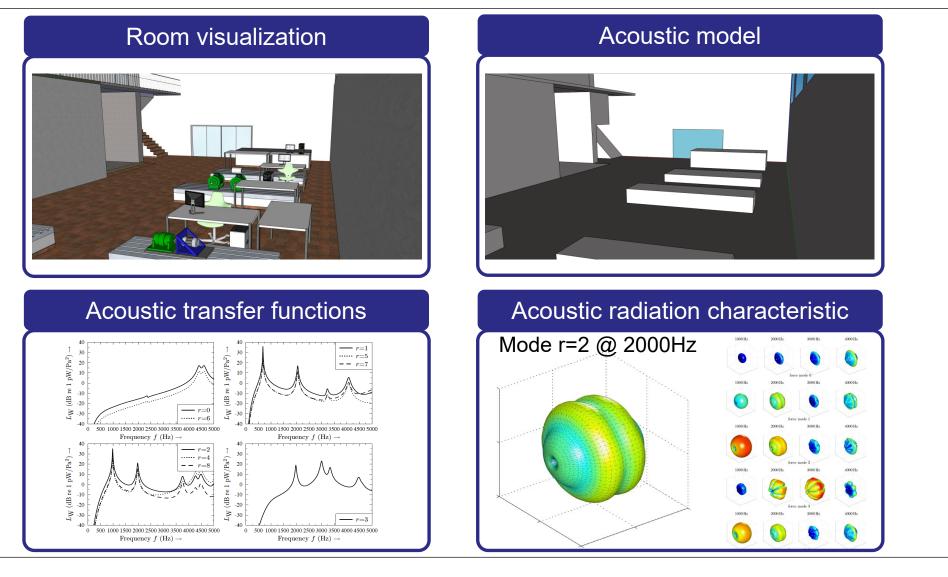

Univ.-Prof. Dr.-Ing. habil. Dr. h. c. mult. Kay Hameyer 2023 | © Institute of Electrical Machines


Ę

Next step including room acoustics: Air borne noise excitation

Apply radiator models

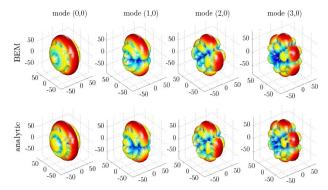

Determine mode and frequency



Institut fü

Elektrische

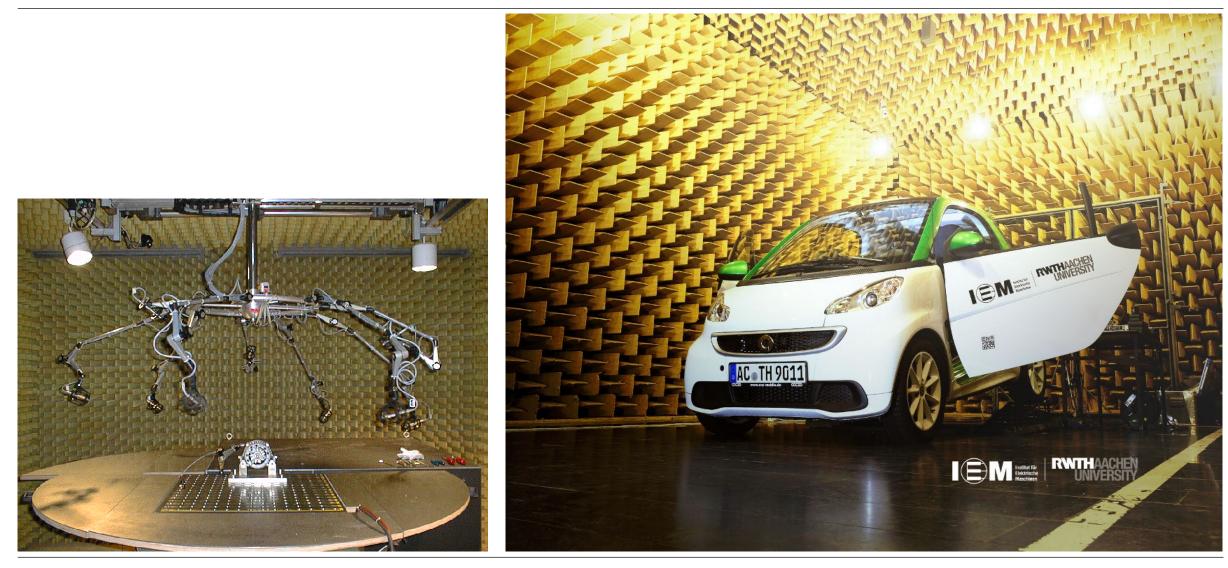
Electric motor - room acoustics


RM

Institut für Elektrische

Electric motor – room acoustic

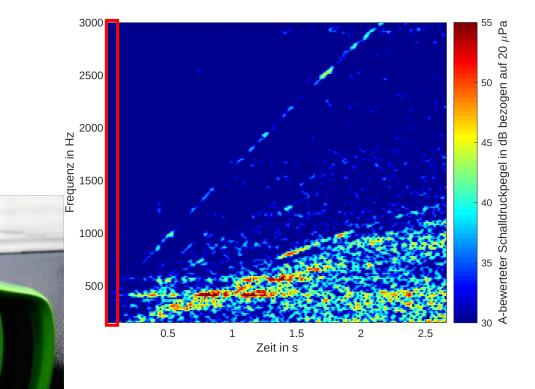
Overall acoustic models


- Actual room acoustic
 - Determined by measurement
- Simple acoustic motor model
 - Radiator models
 - Point
 - Cylinder
 - ...

Acoustic measurements in an an-echoic chamber

From the component to the overall drive system

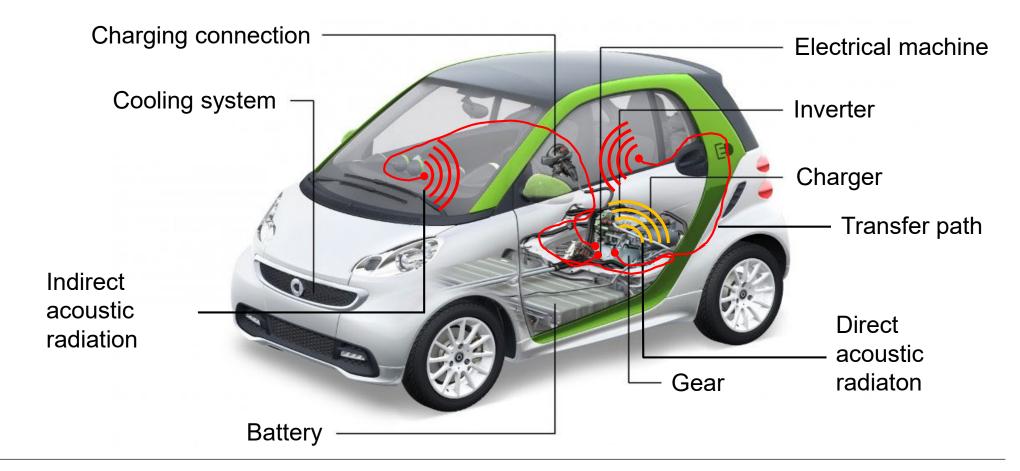
Characterization of the electrical machine	Characterization of the drive train	Characterization of the final application
 Modal analysis Structural dynamics models Electromagnetic forces Measurement on the machine test bed 	 Gear model Radial- and torsion excitation Drive train models Measurements on the drive train test bed 	 Transfer path measurements Emission models Binaural acoustic Measurements on the test track



The drive train as an acoustic source

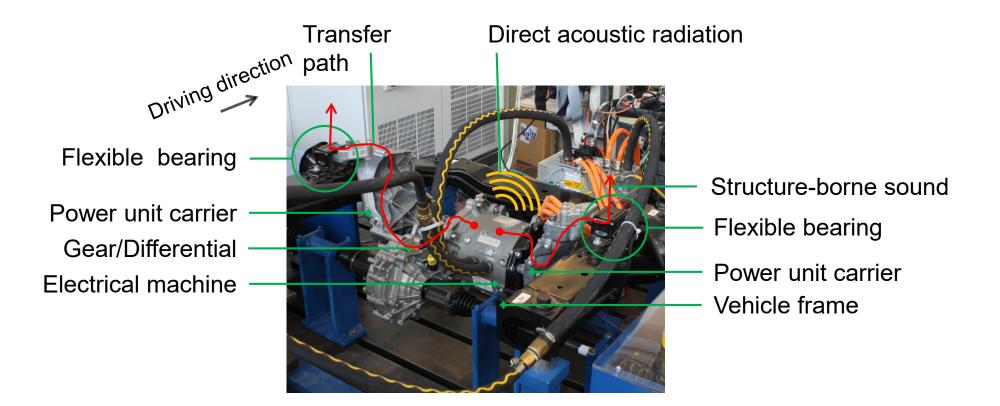
Electric motor analysis (vehicle speed from 0... 50 km/h)

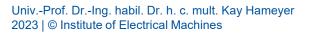
140°-160=



Source of measurement: S. Rick, D. Franck, K. Hameyer, M. Wegerhoff, R. Schelenz, G. Jakobs, J. Klein, G. Behler, M. Vorländer, *E-MOTIVE NVH-Simulationsmodell: Modellbildung zur NVH Simulation eines E-MOTIVE Antriebsstrangs*, Forschungsbericht FVA-682, 2014.

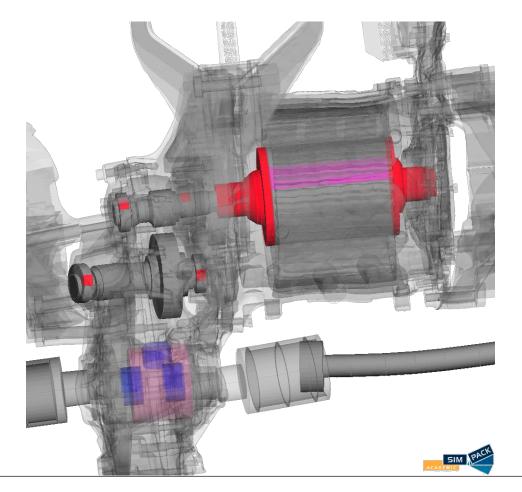
Drive train components and transfer paths





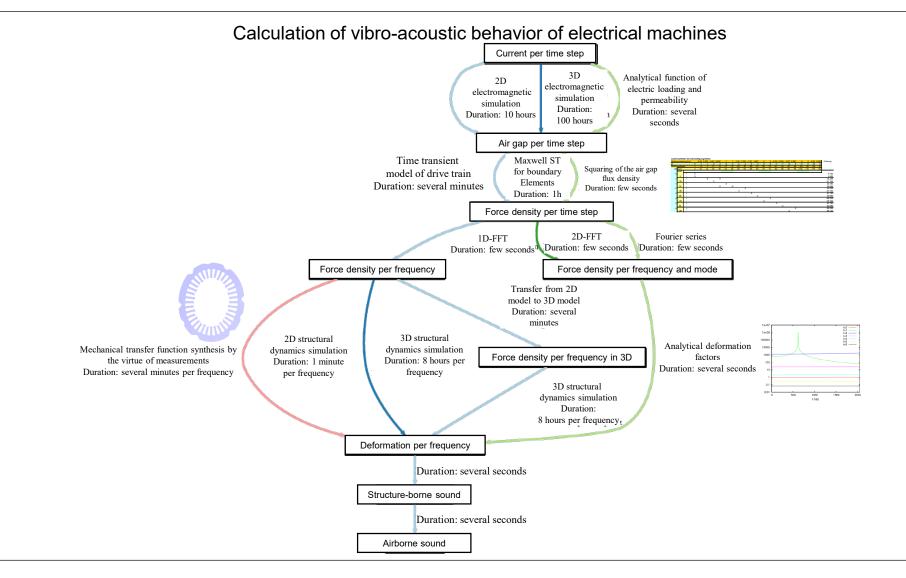
Univ.-Prof. Dr.-Ing. habil. Dr. h. c. mult. Kay Hameyer 2023 | $\textcircled{\mbox{\scriptsize C}}$ Institute of Electrical Machines

Transfer path analysis


S. Rick, D. Franck, K. Hameyer, M. Wegerhoff, R. Schelenz, G. Jakobs, J. Klein, G. Behler, M. Vorländer, *E-MOTIVE NVH-Simulationsmodell: Modellbildung zur NVH Simulation eines E-MOTIVE Antriebsstrangs*, Forschungsbericht FVA-682, 2014

The drive train as an acoustic source

Example simulation with selected form for natural frequency of a drive train



S. Rick, D. Franck, K. Hameyer, **M. Wegerhoff**, R. Schelenz, G. Jakobs, J. Klein, G. Behler, M. Vorländer, *E-MOTIVE NVH-Simulationsmodell: Modellbildung zur NVH Simulation eines E-MOTIVE Antriebsstrangs*, Forschungsbericht FVA-682, 2014.

Summary

Conclusions

- Analytical approach
 - Identification of the frequency ranges of interest
- Numerical simulation
 - The evaluation of structural dynamics and acoustic behavior can take place in an early stage of development, even before prototypes are built
- Multiphysical approach
 - Can be applied to all electrical machines
 - Can be verified by measurements
 - Electrical machines can be observed in a structured way
 - Production tolerances can be considered
 - Materials characteristics and electrical parameters can be improved
- The analysis of single components / sources is not sufficient!
 - Always the overall system with all interactions of the components is required

