

## POZNAN UNIVERSITY OF TECHNOLOGY

**EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)** 

## **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

RAMAN SPECTROSCOPY OF OPTICAL MATERIALS [S5IMAT>SRMO]

Course

Proposed by Discipline Year/Semester

- 3/6

Level of study Course offered in

Doctoral School English

Form of study Requirements

full-time elective

**Number of hours** 

Lecture Laboratory classes Other

4 0

Tutorials Projects/seminars

0

**Number of credit points** 

1.00

Coordinators Lecturers

dr hab. Tomasz Runka prof. PP tomasz.runka@put.poznan.pl

## **Prerequisites**

Knowledge from the field of experimental physics, solid state physics and spectroscopy.

## Course objective

Presentation of the possibilities of using spectroscopic methods, in particular Raman spectroscopy and high-resolution luminescence, to study of single crystalline films of perovskites and garnets obtained by liquid phase epitaxy method.

0

## Course-related learning outcomes

#### Knowledge:

The PhD student has detailed knowledge of selected topics related to functional materials and their characterization methods (P8S WG / SzD W03).

#### Skills:

The PhD student is able to plan and conduct research leading to the characterization of functional materials; and is able to analyze, develop, and document research results (P8S UW / SzD U01).

### Social Competencies:

The PhD student understands the need to continually update and expand knowledge and the need to

improve professional and social competencies (P8S KK / SzD K02, P8S KK / SzD K03).

## Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Presence, discussion, short ending test Active participation in discussion 0-60% Short end test 0-40% 3-60%; 3,5-70%; 4-80%; 4,5-90%; 5-95%

## Programme content

- 1. Raman spectroscopy scattering phenomenon, measurement apparatus.
- 2. Crystalline perovskite layers deposited on crystalline substrates optical studies, applications.
- 3. Crystalline garnet layers deposited on crystalline substrates optical studies, applications.

## **Course topics**

- 1. Raman Spectroscopy Theoretical Description of Light Scattering, Raman Scattering, Selection Rules, and Measurement Equipment Design.
- 2. Crystalline Perovskite Layers Deposited on Crystalline Substrates Liquid Phase Epitaxy Method, Morphology of Crystalline Perovskite Layers, Raman Spectroscopy and High-Resolution Luminescence Studies of Cross-Sections of Perovskite Structures.
- 3. Crystalline Garnet Layers Deposited on Crystalline Substrates Morphology of Crystalline Garnet Layers, Raman Spectroscopy and High-Resolution Luminescence Studies of Cross-Sections of Garnet Structures.

## **Teaching methods**

Lecture: multimedia presentation, animations, films.

## **Bibliography**

- 1. Ch. Kittel Introduction to solid state physics, John Wiley & Sons Inc. 2004.
- 2. G. Turrell Infrared and Raman spectra of crystals, Academic Pr., London, 1972.
- 3. D.L. Rousseau, R.P. Bauman and S.P.S. Porto, Normal mode determination in crystals, Journal of Raman Spectroscopy 10 (1981), 253.
- 4. K.A. Gschneidner, Jr., J.-C.G. Bunzli, V.K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 2009.
- 5. W. Dewo, K. Łuczyńska, Y. Zorenko, V. Gorbenko, K. Drużbicki, T. Runka, "In silico Raman spectroscopy of YAIO3 single-crystalline film", Spectrochim. Acta A 231 (2020) 118111.
- 6. W. Dewo, V. Gorbenko, Y. Syrotych, Y. Zorenko, T. Runka, Mn-Doped XAIO3 (X = Y, Tb) Single-Crystalline Films Grown onto YAIO3 Substrates: Raman Spectroscopy Study toward Visualization of Mechanical Stress, J. Phys. Chem. C 125 (29) (2021) 16279-16288.
- 7. W. Dewo, V. Gorbenko, A. Markovskyi, Y. Zorenko, T. Runka, Photoconversion, luminescence and vibrational properties of Mn and Mn, Ce doped Tb3Al5O12 garnet single crystalline films, J. Lumin. 254 (2023) 119481 1-9.
- 8. A. Markovskyi, P. Radomski, W. Dewo, V. Gorbenko, A. Fedorov, T. Runka, Y. Zorenko, Photoluminescence and Raman spectroscopy of Ce3+ doped Y3Al5O12 single crystalline films grown onto Y3Al5O12 and Lu3Al5O12 substrates, Mat. Res. Bull. 182 (2025) 113141–1-9.
- 9. K. Bartosiewicz, Y. Smortsova, P. Radomski, M.E. Witkowski, K.J. Drozdowski, M. Yoshino, T. Horiai, D. Szymanski, W. Dewo, J. Zeler, P. Socha, M. Buryi, A. Prokhorov, D. John, J. Volf, T. Runka, T. Pędziński, K. Hauza, V. Jary, Y. Shoji, K. Kamada, E. Zych, W. Drozdowski, A. Yoshikawa, Shaping scintillation and UV-VIS-NIR luminescence properties through synergistic lattice disordered engineering and exciton-mediated energy transfer in Pr3+-doped Lu1.5Y1.5 Al5-xScxO12 (x = 0.0 2.0) garnets, J. Mat. Chem. C 13 (2025) 13691-13712.

# Breakdown of average student's workload

|                                                                                                                                                 | Hours | ECTS |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                                                                                  | 25    | 1,00 |
| Classes requiring direct contact with the teacher                                                                                               | 4     | 0,00 |
| Doctoral student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation) | 21    | 1,00 |