

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name INITIAL STABILITY ANALYSIS OF THIN PLATES IN TERMS OF THE FINITE DIFFERENCE METHOD

Course

Proposed by Discipline Civil engineering, geodesy an Type of studies Doctoral School Form of study full-time	d transport	Year/Semester II/4, III/6 Course offered in English Requirements elective
Number of hours		
Lecture 4	Tutorials	Projects/seminars
Number of credit points 1		

Responsible for the course/lecturer:

Lecturers

Responsible for the course/lecturer:

dr hab. inż. Michał Guminiak email: michal.guminiak@put.poznan.pl phone: +48 61 665 2475 Faculty of Civil and Transport Engineering Poznan University of Technology ul. Piotrowo 3, 60-965 Poznan, Poland

Prerequisites

Knowledge: Foundations of differential and difference calculus and algebra.

Skills: A PhD student the student is able to perform operations of differentiation and integration of elementary function.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Social competencies: the student is able to develop their skills and build differential relationships for more complex problems.

Course objective

The aim of the course is to familiarize students with the numerical method of solving partial differential equations, reduced to a system of difference equations.

Course-related learning outcomes

Knowledge

A PhD student who graduated from doctoral school knows and understands:

1) General application of numerical methods in mechanics, especially the Finite Difference Method (FDM) [P8S_WG/SzD_W01]

2) knows how to refer to the available literature in his own research, how to embed his own research in it. [P8S_WG/SzD_W01].

Skills

A PhD student who graduated from doctoral school can:

1) develop numerical procedures for classical problems of structural mechanics using the FDM and the FEM approaches, especially [P8S_UW/SzD_U01].

2) consciously use scientific and commercial numerical computing packages (e.g.: Maple, Matlab, etc.). [P8S_UW/SzD_U01].

Social competences

A PhD student who graduated from doctoral school is ready to:

1) develop the independent research work in the field of mechanics of materials and structures,

[P8S_KK/SzD_K01], [P8S_KK/SzD_K02].

2) critical evaluation of the results of own scientific research [P8S_KK/SzD_K02]

3) formulating and solving scientific problems in the field of mechanics of materials and structures [P8S_KK/SzD_K01], [P8S_KK/SzD_K02].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

PQF code	Methods for verification of learning outcomes	Assessment criteria	
W01	a short test or development of a selected simple problem related to the use of differential schemes	40% - 50% sufficient, 50%- 65% average, 65%- 80% good, 80%-95% very good, 95%-100% excellent.	
U01	a short test or development of a selected simple problem related to the use of differential schemes	40% - 50% sufficient, 50%- 65% average, 65%- 80% good, 80%-95% very	

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

		good, 95%-100%
		excellent.
K01, K02	a short test or development of a selected simple problem	40% - 50% sufficient,
	related to the use of differential schemes	50%- 65% average, 65%-
		80% good, 80%-95% very
		good, 95%-100%
		excellent.

Programme content

1. Introduction: Differential equation for plate bending problems.

2. Static analysis of plates. The overview of methods used to solve it. Assembling of set of algebraic equations for analytica, finite element and finite difference methods.

3. Dynamic analysis of thin (Kirchhoff-Love) plate. using the Finite Difference Method. Assembling of set of algebraic equation and the standard eigenvalue problem.

4. Initial stability analysis of thin (Kirchhoff-Love) plate using the Finite Difference Method. Assembling of set of algebraic equation and the standard eigenvalue problem.

Teaching methods

Lecture: clasic bench, chalk and blackboard approach and multimedia presentation including illustrations and examples.

Bibliography

Basic

1. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics, Philadelfia, USA, 2007.

2. H. Levy, F. Lessman, Finite Difference Equations. DOVER PUBN INC, 1992.

Additional

1. J. Orkisz, Finite Difference Method. In M. Kleiber (Ed.), Handbook of Computational Solid Mechanics (Part III). Berlin: Spriger-Verlag, (1998).

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	20	1.0
Classes requiring direct contact with the teacher	4	0.5
Student's own work (literature studies, preparation for tutorials,	16	0.5
project preparation) ¹		

¹ delete or add other activities as appropriate