

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name ARTIFICIAL NEURAL NETWORKS IN THE DESIGN OF CONTROL SYSTEMS						
Course						
Proposed by Discipline	Year/Semester					
Automation, electronic, ele	ectrical engineering and space	III/6				
technologies		Course offered in				
Type of studies		English				
Doctoral School		Requirements				
Form of study		elective				
full-time						
Number of hours						
Lecture	Tutorials	Projects/seminars				
4						
Number of credit points						
1						
Lecturers						
Responsible for the course	/lecturer: Resp	onsible for the course/lecturer:				
dr hab. Stefan Brock, prof.	PUT					
email: stefan.brock@put.p	oznan.pl					
phone: +48 61 665 2627						
Faculty of Automatic Contr	ol, Robotics and					
Electrical Engineering						
Poznan University of Techr	nology					
ul. Piotrowo 3a, 60-965 Poi	znan, Poland					

Prerequisites

Knowledge: knows and understands in enhanced level the selected areas of mathematics: linear algebra, has an background knowledge of methods of analysis and design of control systems.

Skills: has the ability to self-educate in order to improve and update one's professional competences, can design control systems using selected engineering tools (e.g. Matlab).

Social competencies: is aware of responsibility for own work and willingness to conform to the principles of teamwork and taking responsibility for jointly implemented tasks.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

The purpose of this lecture series is to provide a quick overview of neural networks and to explain how they can be used in control systems. We introduce the multilayer perceptron neural network and describe how it can be used for function approximation. The popular algorithms for training multilayer perceptrons are briefly described. Care must be taken, when training perceptron networks, to ensure that they do not overfit the training data and then fail to generalize well in new situations. Some techniques for improving generalization are discussed. The lecture also presents the feedback linearization control and model reference adaptive control. We demonstrate the practical implementation of this controller, using the Matlab/Simulink environment.

Course-related learning outcomes

Knowledge

A PhD student who graduated from doctoral school knows and understands:

1) key developmental trends of science disciplines in which education takes place at the doctoral school, [P8S_WG/SzD_W02]

2) scientific research methodology in disciplines represented at the doctoral school.

[P8S_WG/SzD_W03]

Skills

A PhD student who graduated from doctoral school can:

1) use the knowledge from different branches of science to creatively identify, formulate and to

innovatively solve complex problems, [P8S_UW/SzD_U01]

2) critically analyze and asses scientific research results, work of experts and other creative activities together with their contribution into knowledge development. [P8S_UW/SzD_U02]

Social competences

A PhD student who graduated from doctoral school is ready to:

1) critically evaluate their own contribution to the development of a given scientific discipline,

[P8S_KK/SzD_K02]

2) acknowledge the importance of knowledge in solving cognitive and practical problems.

[P8S_KK/SzD_K03]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

PQF code	Methods for verification of learning outcomes	Assessment criteria	
W02, W03	Written report, prepared in a group of 2-3 students or	Grade F (2.0): Failure to	
	individually. The report should contain results of neural	design. No method given	
	control system tests. Models will be provided by the	or completely incorrect	
	instructor or developed individually	method	
		Grade E (3.0): The design	
		incorrect; the learners	
		will show evidence of	
		ability to make the	

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

		calculations correctly but	
		the demonstration of	
		how the calculation was	
		done is poor, incoherent	
		or not sufficiently	
		detailed	
		Grade range C-D (3.5-	
		4.0): The learners show evidence of the ability to design the control system correctly but the demonstration of how it	
		was done insufficient	
		Grade range A-B (4.5-	
		5.0): The learners will	
		show evidence of the	
		ability to make the	
		design of control system correctly; the demonstration of how it was done is excellent,	
		coherent, detailed and	
		very well explained,	
		showing great command	
		and understanding of the	
		methods involved	
U01, U02	as above	as above	
КО2, КОЗ	as above	as above	

Programme content

1. Multilayer perceptron architecture (Neural networks have been applied successfully in the identification and control of dynamic systems. The universal approximation capabilities of the multilayer perceptron make it a popular choice for modeling nonlinear systems and for implementing general purpose nonlinear controllers).

2. Approximation capabilities and training of multilayer networks (Multilayer networks, with sigmoid transfer functions in the hidden layers and linear transfer functions in the output layer, are universal approximators, can approximate virtually any function of interest to any degree of accuracy, provided sufficiently many hidden units are available. The procedure for selecting the parameters for a given problem is called training the network. There are many optimization algorithms that can use the

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

backpropagation procedure, in which derivatives are processed from the last layer of the network to the first. For example, conjugate gradient and quasi-Newton algorithms are generally more efficient than steepest descent algorithms, and yet they can use the same backpropagation procedure to compute the necessary derivatives. The Levenberg-Marquardt algorithm is very efficient for training small to medium-size networks).

3. Control systems applications – Feedback linearization control (There are typically two steps involved when using neural networks for control: system identification and control design. In the system identification stage, we develop a neural network model of the plant that we want to control. In the control design stage, we use the neural network plant model to design (or train) the controller. The central idea of feedback linearization control is to transform nonlinear system dynamics into linear dynamics by canceling the nonlinearities. This section begins by presenting the companion form system model and showing how we can use a neural network to identify this model. Then it describes how the identified neural network model can be used to develop a controller).

4. Control systems applications - Model reference control (Model reference control architecture uses two neural networks: a controller network and a plant model network. The plant model is identified first, and then the controller is trained so that the plant output follows the reference model output).

Teaching methods

Lecture: multimedia presentation including illustrations and examples.

Bibliography

Basic

1. Liu J.: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, Springer 2013.

2. Lewis F. L., Shuzhi Sam Ge: Neural Networks in Feedback Control Systems, in: Mechanical Engineers' Handbook, Wiley 2006.

Additional

1. Mathworks documentation: Neural Network Control Systems, 2019.

2. Perez, C.: Neural networks control systems with Matlab. radial basis and LVQ neural network, CreateSpace 2017.

3. Sarangapani J.: Neural Network Control of Nonlinear Discrete-Time Systems, CRC 2006.

Breakdown of average student's workload

	Hours	ECTS
Total workload	11	1.0
Classes requiring direct contact with the teacher	5	0.5
Student's own work (literature studies, preparation for tutorials,	6	0.5
project preparation) ¹		

¹ delete or add other activities as appropriate