

#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

### **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

#### MACHINE LEARNING METHODS IN NATURAL LANGUAGE PROCESSING

**Course** 

Proposed by Discipline Year/Semester

Information and communication technology II/4, III/6

Type of studies Course offered in

Doctoral School English

Form of study Requirements

full-time elective

**Number of hours** 

Lecture Tutorials Projects/seminars

4

## **Number of credit points**

1

#### **Lecturers**

Responsible for the course/lecturer:

Responsible for the course/lecturer:

dr hab. inż. Mikołaj Morzy, prof. PUT email: mikolaj.morzy@put.poznan.pl

phone: +48 61 665 2961

**Faculty of Computing and Telecommunications** 

Poznan University of Technology

ul. Piotrowo 2, 60-965 Poznan, Poland

### **Prerequisites**

Knowledge: very basic understanding of algorithms, ability to read and understand very simple blocks of computer pseudo-code, understanding of basic statistics.

Skills: ability to transfer knowledge between domains, and to apply learned patterns to different domains.

Social competencies: thinking outside the box to solve various problems using available textual resources.



#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

### **Course objective**

The main aim of the course is to present the newest developments in the area of natural language processing (NLP) using algorithms and techniques of machine learning (ML). The majority of human knowledge is currently stored in the form of unstructured text. Abstracts, reviews, descriptions, posts, emails, tweets, all create a huge corpus of data which cannot be analyzed manually. Such textual corpora exist in almost all domains of science and technology. Computer methods for text analysis are collectively known as NLP. In the recent years we are witnessing a true revolution in NLP due to the development of machine learning methods designed specifically to tackle NLP challenges. During the lecture the students will learn basic NLP methods (tokenization, lemmatization, stemming), basic representation methods (one-hot encoding, TF-IDF), as well as methods based on neural networks (word and sentence vectors, transformer language models). We will discuss methods for sentiment analysis in text, named entity recognition, neural translation, sequence to sequence learning, and more.

### **Course-related learning outcomes**

#### Knowledge

A PhD student who graduated from doctoral school knows and understands:

- 1) current achievements in the combined fields of machine learning and natural language processing, they understand basic principles of algorithms used to extract useful knowledge from unstructured text, [P8S WG/SzD W01]
- 2) the current developmental trends in machine learning and natural language processing, and can identify research questions in their scientific domains that can be addressed using machine learning and natural language processing. [P8S WG/SzD W02]

#### Skills

A PhD student who graduated from doctoral school can:

- 1) has the knowledge of machine learning and natural language processing to collect new data and new insights in their respective scientific disciplines, [P8S UW/SzD U01]
- 2) design new distributed representations of data in their scientific disciplines using the paradigm of encoder-decoder neural network architecture. [P8S\_UW/SzD\_U03]

### Social competences

A PhD student who graduated from doctoral school is ready to:

1) acknowledge the importance of natural language processing methods by designing a research question involving their own discipline that can be addressed using machine learning and natural language processing. [P8S\_KK/SzD\_K03]



#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

| PQF code | Methods for verification of learning outcomes              | Assessment criteria       |  |
|----------|------------------------------------------------------------|---------------------------|--|
| W01, W02 | Writing a short project description of how to use selected | Quality, size, and        |  |
|          | NLP methods creatively to answer scientific questions      | availability of text      |  |
|          | relevant to student's own discipline                       | corpora proposed in the   |  |
|          |                                                            | project description       |  |
| U01, U03 | Writing a short project description of how to use selected | Appropriateness of the    |  |
|          | NLP methods creatively to answer scientific questions      | proposed methods for      |  |
|          | relevant to student's own discipline                       | defining semantic         |  |
|          |                                                            | similarity in the area of |  |
|          |                                                            | student's discpline       |  |
| K03      | Writing a short project description of how to use selected | Relevance of the          |  |
|          | NLP methods creatively to answer scientific questions      | proposed NLP method to    |  |
|          | relevant to student's own discipline                       | the selected scientific   |  |
|          |                                                            | question in the area of   |  |
|          |                                                            | student's discipline      |  |

### **Programme content**

- 1. Natural Language Processing (Representation of text, Stemming, lemmatization, tokenization, Vector-space models of text).
- 2. Machine learning (Introduction to machine learning, Neural networks, Classification and clustering, Distance functions).
- 3. Distributed representations (Word vectors (word2vec, GloVe), Sentence vectors, Language models).
- 4. Advanced topics (Sentiment analysis, Named Entity Recognition, Neural Translation).

### **Teaching methods**

Lecture: multimedia presentation including illustrations and examples.

# **Bibliography**

## Basic

1. Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of machine learning research 12. Aug (2011): 2493-2537.



## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

#### Additional

- 1. Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.
- 2. Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014.
- 3. Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155.

## Breakdown of average student's workload

|                                                                                                                                      | Hours | ECTS |
|--------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                                                                       | 25    | 1,0  |
| Classes requiring direct contact with the teacher                                                                                    | 4     | 0,2  |
| Student's own work (literature studies, preparation for tutorials, project preparation, consultations with the teacher) <sup>1</sup> | 21    | 0,8  |

4

<sup>&</sup>lt;sup>1</sup> delete or add other activities as appropriate