POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

A THEORETICAL PERSPECTIVE ON MACHINE LEARNING

Course

Proposed by Discipline

Information and

communication technology

Type of studies

Doctoral School

Form of study

full-time

Year/Semester

11/3, 111/5

Course offered in

English

Requirements

elective

Number of hours

Lecture Tutorials Projects/seminars

4

Number of credit points

1

Lecturers

Responsible for the course/lecturer:

dr hab. inż. Wojciech Kotłowski,

prof. PUT

email: wkotlowski@put.poznan.pl

phone: +48 61 665 2936 Faculty of Computing and Telecommunications,

Poznan University of Technology

ul. Piotrowo 2, 60-965 Poznan,

Poland

Responsible for the course/lecturer:

Prerequisites

Knowledge: Basic knowledge of university-level mathematics (calculus, linear algebra), probabability calculus, basics of statistics, algorithmics and programming

Skills: Fluent English, ability to read and understand scientific articles, fluency in mathematics at a level taught at Computer Science faculty, programming skills.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Social competencies: Integrity, ability to work systematically, scientific curiosity.

Course objective

The basics of machine learning from a theoretical perspective

Course-related learning outcomes

Knowledge

A PhD student who graduated from doctoral school knows and understands:

- 1) Current achievements in the field of machine learning, covering theoretical basis as well as general and selected specific issues related to that discipline [P8S_WG/SzD_W01]
- Key development trends in machine learning [P8S_WG/SzD_W02]

Skills

A PhD student who graduated from doctoral school can:

- 1) Use the knowledge from different branches of science to creatively identify, formulate and to innovatively solve complex problems or to execute research tasks in machine learning [P8S_UW/SzD_U01]
- 2) Critically analyze and asses scientific research results, work of experts and other creative activities together with their contribution into knowledge development [P8S_UW/SzD_U02]

Social competencies

A PhD student who graduated from doctoral school is ready to:

1) Acknowledge the importance of machine learning methods by designing a research question involving their own discipline that can be addressed by these methods [P8S KK/SzD K03]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

PQF code	Methods for verification of learning outcomes	Assessment criteria
W01, W02	Writing an essay on how machine learning methods can answer scientific questions relevant to student's own discipline	Quality of the text and proposed research questions
U01, U02	Writing an essay on how machine learning methods can answer scientific questions relevant to student's own discipline	Quality of the text and proposed research questions
К03	Writing an essay on how machine learning methods can answer scientific questions relevant to student's own discipline	Quality of the text and proposed research questions

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Programme content

- 1. **Statistical decision theory**: Supervised learning. Statistical learning framework. Making optimal decisions. Classification, regression. Learning paradigms.
- 2. **Machine learning algorithms**: Histogram-based methods. Decision trees. Nearest-neighbor methods. Naive Bayes. Linear models.

Course topics

Statistical decision theory Machine learning algorithms

Teaching methods

Lecture: multimedia presentation including illustrations and examples.

Bibliography

Basic

1. Hastie, Tibshirani, Friedman: The Elements of Statistical Learning. Springer, 2009.

Additional

- 1. Abu-Mostafa, Magdon-Ismail, Lin: Learning from Data. AMLBook, 2012.
- 2. Shalev-Shwartz, Ben-David: Understanding Machine Learning:From Theory to Algorithms. Cambridge University Press, 2014

Breakdown of average student's workload

	Hours	ECTS
Total workload	25	1,0
Classes requiring direct contact with the teacher	4	0
Doctoral student's own work (literature studies, preparation for	21	1,0
tutorials, project preparation) ¹		

¹ delete or add other activities as appropriate