POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

"REDOX OR NON-REDOX... THAT IS THE QUESTION" – TOWARDS UNDERSTANDING ELECTROCHEMISTRY AND ENERGY CONVERSION/STORAGE PROCESSES

Course

Proposed by Discipline Year/Semester

Chemical sciences II/3

Type of studies Course offered in

Doctoral School English

Form of study Requirements

full-time elective

Number of hours

Lecture Tutorials Projects/seminars

8

Number of credit points

2

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

dr hab. inż. Krzysztof Fic, prof. PUT email: krzysztof.fic@put.poznan.pl

phone: +48 61 665 23 03

Faculty of Chemical Technology Poznan University of Technology

ul. Berdychowo 4, 60-965 Poznan, Poland

Prerequisites

Knowledge: Fundamental knowledge on physical chemistry, surface chemistry and double-layer processes.

Skills: Understanding the charge storage processes by principle

Social competencies: Motivation, diligence and self-development attitude

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

The course aims at comprehensive description of modern electrochemical energy conversion and storage systems, with special attention focused on electrochemical capacitors and Li-ion batteries. This should allow for better understanding of charge storage phenomena and appropriate selection of the systems in everydays's life.

Course-related learning outcomes

Knowledge

A PhD student who graduated from doctoral school knows and understands:

1) scientific research methodology in disciplines related to engineering, natural sciences, and social sciences. [P8S_WG/SzD_W03]

Skills

A PhD student who graduated from doctoral school can:

 critically analyze and asses scientific research results in applied electrochemistry, work of experts and other creative activities together with their contribution into knowledge development, [P8S_UW/SzD_U02]

Social competencies

A PhD student who graduated from doctoral school is ready to:

 critically analyze and asses scientific research results in physical chemistry and applied electrochemistry, work of experts and other creative activities together with their contribution into knowledge development, [P8S_KK/SzD_K01]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

PQF code	Methods for verification of learning outcomes	Assessment criteria
W03	Final test with 20 slessed (20 naints) and Figure (20 naints)	40-36 points: very good
	Final test with 20 closed (20 points) and 5 open (20 points) questions that cover the lecture content.	(5.0)
U02		35-30 points: good + (4.5)
		28-29 points: good (4.0)
K01		25-27 points: acceptable +
		(3.5)
		21-24 points: acceptable
		(3.0)

Programme content

Lecture will provide the comprehensive knowledge on electrochemical energy storage processes and devices. Special attention will be focused on Li-ion batteries, electrochemical capacitors and various operando methods allowing for full characterization of the materials used in this application.

Course topics

- 1. Electric double-layer
- 2. Electrochemical capacitors
- 3. Li-ion batteries
- 4. Operando techniques in electrochemistry

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Teaching methods

Interactive lecture + active discussion with audience

Bibliography

Basic

(1) Supercapacitors: Materials, Systems, and Applications, Editor(s):Prof. François Béguin, Prof. Elżbieta Frąckowiak, Print ISBN:9783527328833 | Online ISBN:9783527646661 | DOI:10.1002/9783527646661, Copyright © 2013 Wiley-VCH Verlag GmbH & Co. KGaA

Additional

_

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	8	0
Doctoral student's own work (literature studies, preparation for	42	2,0
tutorials, project preparation) ¹		

¹ delete or add other activities as appropriate